Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=> 4A = 4 + 42 + 43 + ... + 42020
4A - A = 4 + 42 + ... + 42020 ) - ( 1 + 4 + ... + 42019 )
3A = 42020 - 1
A = \(\frac{4^{2020}-1}{3}\)
Ta có A - B = 0
Vậy A - B = 0
Ta có : A = 40 + 41 + 42 + .... + 42019
= 1+ 4 + 42 + .... + 42019
=> 4A = 4 + 42 + 43 + ... + 42020
Lấy 4A trừ A theo vế ta có :
\(4A-A=\left(4+4^2+4^3+...+4^{2020}\right)-\left(1+4+4^2+...+4^{2019}\right)\)
\(3A=4^{2020}-1\)
\(A=\frac{4^{2020}-1}{3}\)
\(\Rightarrow A-B=\frac{4^{2020}-1}{3}-\frac{4^{2020}}{3}=\frac{4^{2020}-1-4^{2020}}{3}=-\frac{1}{3}\)
\(A=1+4+4^2+4^3+...+4^{50}\)
\(4A=4\left(1+4+4^2+4^3+...+4^{50}\right)\)
\(4A=4+4^2+4^4+...+4^{51}\)
\(3A=4^{51}-1\)
\(A=\frac{\left(4^{51}-1\right)}{3}\)
4A = 4+4^2+....+4^51
3A = 4A - A = (4+4^2+....+4^51) - (1+4+4^2+....+4^50) = 4^51 - 1
=> A = (4^51-1)/3
k mk nha
a, C = 1 + 4 + 42 + 43 + 44 + 45 + 46
4C = 4 + 42 + 43 + 44 + 45 + 46 + 47
b, 4C - C = ( 4+42 + 43 + 44 +45 + 46 + 47 ) - ( 1 + 4 + 42 + 43 +44 +45 + 46 )
3C = 47 - 1
=> C = ( 47 - 1 ) : 3
nhớ k đấy nhé
\(A=1+4+4^2+4^3+...+4^{50}\)
=> \(4A=4+4^2+4^3+4^4+...+4^{51}\)
=> \(4A-A=\left(4+4^2+4^3+...+4^{51}\right)-\left(1+4+4^2+...+4^{50}\right)\)
=> \(3A=4^{51}-1\)
=> \(A=\frac{4^{51}-1}{3}\)
ta có A=4^0+4^1+4^2+4^3+4^4+...+4^2016(1)
4A=4.(4^0+4^1+4^2+4^3+4^4+...+4^2016)
4A=4+4^2+4^3+...+4^2017(2)
lấy dt (2) trừ dt (1),có:
4A-A=(4+4^2+4^3+...+4^2017)-(4^0+4^1+4^2+4^3+4^4+...+4^2016)
3A=4^2017-1
A=4^2017-1 :3
B-A=4^2017-1 :3-4^2017-1 :3=0
Vậy.....
A = 40 + 41 + 42 + 43 + 44 + .... + 42016
\(\Rightarrow\)4A = 41 + 42 + 43 + 44 + 45 + .... + 42015 + 42016 + 42017
\(\Rightarrow\) 4A - A = 42017 - 40
\(\Rightarrow\) 3A = 42017 - 1
\(\Rightarrow\) A = (42017 - 1) : 3 (1)
Có B = 42017 : 3 (2)
(1)(2) \(\Rightarrow\)B - A = 1
Vậy B - A = 1
Chúc bn hok giỏi nha ^ _ ^
a, C = 1 + 4 + 42 + 43 + 44 + 45 + 46
4C = 4 + 42 + 43 + 44 + 45 + 46 + 47
b, 4C - C = ( 4+42 + 43 + 44 +45 + 46 + 47 ) - ( 1 + 4 + 42 + 43 +44 +45 + 46 )
3C = 47 - 1
=> C = ( 47 - 1 ) : 3
\(A=1-4+4^2-4^3+...+4^{98}-4^{99}+4^{100}\)
=>\(4A=4-4^2+4^3-4^4+...+4^{99}-4^{100}+4^{101}\)
=>\(4A+A=4-4^2+4^3-...+4^{99}-4^{100}+4^{101}+1-4+4^2-...+4^{98}-4^{99}+4^{100}\)
=>\(5A=4^{101}+1\)
=>\(A=\dfrac{4^{101}+1}{5}\)