K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2024

Số số hạng của S:

100 - 51 + 1 = 50 (số)

Ta có:

1/51 > 1/100

1/52 > 1/100

1/53 > 1/100

...

1/99 > 1/100

1/100 = 1/100

Cộng vế với vế, ta có:

S > 1/100 + 1/100 + 1/100 + ... + 1/100 (50 số 1/100)

= 50/100

= 1/2

Vậy S > 1/2

9 tháng 5 2024

S = \(\dfrac{1}{51}\) + \(\dfrac{1}{52}\) + \(\dfrac{1}{53}\) +...+\(\dfrac{1}{98}\) + \(\dfrac{1}{100}\)

Tổng S có số phân số là: (100 - 51) : 1 + 1  = 50

Mặt khác ta có: \(\dfrac{1}{51}\) > \(\dfrac{1}{52}\) > \(\dfrac{1}{53}\)> ...> \(\dfrac{1}{100}\) 

     ⇒ \(\dfrac{1}{51}\) + \(\dfrac{1}{52}\) + \(\dfrac{1}{53}\) + ... + \(\dfrac{1}{100}\) > \(\dfrac{1}{100}\) + \(\dfrac{1}{100}\)+...+ \(\dfrac{1}{100}\)

         \(\dfrac{1}{51}\) + \(\dfrac{1}{52}\) + \(\dfrac{1}{53}\) + ... + \(\dfrac{1}{100}\) > \(\dfrac{1}{100}\) x 50

         \(\dfrac{1}{51}\) + \(\dfrac{1}{52}\) + \(\dfrac{1}{53}\) + ... + \(\dfrac{1}{100}\) > \(\dfrac{1}{2}\)

 Vậy S = \(\dfrac{1}{51}\) + \(\dfrac{1}{52}\) + \(\dfrac{1}{53}\) + ... + \(\dfrac{1}{100}\) > \(\dfrac{1}{2}\)

 

15 tháng 3 2023

dãy trên có tất cả :(100-51):1+1=50 phân số

Ta có : 1/2:50=1/100

=>1/2=1/100+1/100+1/100+...+1/100(có tất cả 50 phân số 1/100)

Các phân số trong dãy S đều lớn hơn 1/100 ngoại trừ phân số cuối

=>dãy S >1/2

15 tháng 3 2015

cac phan so 1/51;1/52;1/53;....1/99 đều lớn hơn 1/100. vậy S>1/100+1/100+....+1/100(co 50 phan so)=>S>50/100=1/2

13 tháng 5 2016
Ta thầy từ: 1/51 + 1/52 + 1/53 + 1/54 + .....+ 1/98 + 1/99 mỗi số hạng đều lớn hơn 1/100 Mà tổng trên có (100-51)+1= 50 (số hạng) Nên: 1/51 + 1/52 + 1/53 + 1/54 + .....+ 1/98 + 1/99 + 1/100 > 1/100 x 50 = 50/100 = 1/2 Vậy: s > 1/2
5 tháng 1 2020

Ta có :

\(\frac{1}{51}\)\(\frac{1}{100}\)

\(\frac{1}{52}\)\(\frac{1}{100}\)

      ...

\(\frac{1}{99}\)\(\frac{1}{100}\)

\(\frac{1}{100}\)\(\frac{1}{100}\)

=> S > 50 x \(\frac{1}{100}\)

=> S > \(\frac{50}{100}\)\(\frac{1}{2}\)

Vậy S > \(\frac{1}{2}\)

5 tháng 1 2020

\(S=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)

Ta có \(\frac{1}{51}>\frac{1}{100}\)

        \(\frac{1}{52}>\frac{1}{100}\)

               ...

        \(\frac{1}{99}>\frac{1}{100}\)

\(\Rightarrow\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{99}+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\)

                                                                                         ( có 50 phân số)

\(\Rightarrow S>50.\frac{1}{100}\)

\(\Rightarrow S>\frac{1}{2}\)

Vậy...

23 tháng 3 2018

\(\Rightarrow S>\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+....+\frac{1}{100}\left(50SH\right)\)

\(\Rightarrow S>\frac{50.1}{100}\)

\(\Rightarrow S>\frac{50}{100}\)

\(\Rightarrow S>\frac{1}{2}\)

Vậy \(S>\frac{1}{2}\)

23 tháng 3 2018

nhỏ hơn

14 tháng 3 2018

Ta có : 

\(S=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=50.\frac{1}{100}=\frac{50}{100}=\frac{1}{2}\)

\(\Rightarrow\)\(S>\frac{1}{2}\)

Vậy \(S>\frac{1}{2}\)

Chúc bạn học tốt ~

14 tháng 3 2018

\(S>\frac{1}{100}\cdot50=\frac{1}{2}\)

5 tháng 3 2016

Ta có:

\(\frac{1}{51}>\frac{1}{100}\)

\(\frac{1}{52}>\frac{1}{100}\)

...

\(\frac{1}{99}>\frac{1}{100}\)

\(\frac{1}{100}=\frac{1}{100}\)

=> S = \(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{99}+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}+\frac{1}{100}\)

Mà số số hạng của S là: (100 - 51) : 1 + 1 = 50 (số)

=> S \(>\frac{1}{100}.50\)

=> S \(>\frac{1}{2}\)

Vậy S > 1/2.

31 tháng 7 2016

to giup cau nhe 

Vi tat ca cac phan so tren deu nho hon 1/2 ne tong do se nho hon 1/2

Neu cau cho la dung hay chon cau tra loi cua minh nhe

31 tháng 7 2016

Ta thầy từ: 1/51 + 1/52 + 1/53 + 1/54 + .....+ 1/98 + 1/99 mỗi số hạng đều lớn hơn 1/100 Mà tổng trên có (100-51)+1= 50 (số hạng)

Nên 1/51 + 1/52 + 1/53 + 1/54 + .....+ 1/98 + 1/99 + 1/100 > 1/100 x 50 = 50/100 = 1/2 Vậy: s > 1/2