K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5

Gọi d=ƯCLN(2n+5;4n+8)

=>4n+10-4n-8 chia hết cho d

=>2 chia hết cho d

mà 2n+5 lẻ

nên d=1

=>ĐPCM

 

14 tháng 4 2020

b1 : 

a, gọi d là ƯC(2n + 1;2n +2) 

=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d

=> 2n + 2 - 2n - 1 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> 2n+1/2n+2 là ps tối giản

14 tháng 4 2020

Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:

A=2n+1/2n+2

Gọi ƯCLN của chúng là a 

Ta có:2n+1 chia hết cho a

           2n+2 chia hết cho a

- 2n+2 - 2n+1 

- 1 chia hết cho a

- a= 1

  Vậy 2n+1/2n+2 là phân số tối giản

B=2n+3/3n+5

Gọi ƯCLN của chúng là a

2n+3 chia hết cho a

3n+5 chia hết cho a

Suy ra 6n+9 chia hết cho a

            6n+10 chia hết cho a

6n+10-6n+9

1 chia hết cho a 

Vậy 2n+3/3n+5 là phân số tối giản

Mình chỉ biết thế thôi!

#hok_tot#

4 tháng 3 2022

giúp mik nhanh vs khocroikhocroikhocroi plsssssss

 

a: Gọi a=UCLN(n+1;2n+3)

\(\Leftrightarrow2n+3-2\left(n+1\right)⋮a\)

\(\Leftrightarrow1⋮a\)

=>a=1

=>n+1/2n+3 là phân số tối giản

b: Gọi d=UCLN(2n+5;4n+8)

\(\Leftrightarrow4n+10-4n-8⋮d\)

\(\Leftrightarrow2⋮d\)

mà 2n+5 là số lẻ

nên n=1

=>2n+5/4n+8 là phân số tối giản

DD
14 tháng 5 2021

Đặt \(d=\left(n+1,3n+2\right)\).

Suy ra \(\hept{\begin{cases}n+1⋮d\\3n+2⋮d\end{cases}}\Rightarrow3\left(n+1\right)-\left(3n+2\right)=1⋮d\Rightarrow d=1\).

Do đó ta có đpcm. 

DD
14 tháng 5 2021

Đặt \(d=\left(2n+1,4n+3\right)\).

Suy ra \(\hept{\begin{cases}2n+1⋮d\\4n+3⋮d\end{cases}}\Rightarrow\left(4n+3\right)-2\left(2n+1\right)=1⋮d\Rightarrow d=1\).

Do đó ta có đpcm. 

29 tháng 4 2019

Đặt \(\left(4n+12,2n+5\right)=d\)

\(\Leftrightarrow\hept{\begin{cases}\left(4n+12\right)⋮d\\\left(2n+5\right)⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(4n+12\right)⋮d\\\left[2\left(2n+5\right)\right]⋮d\end{cases}}\)

\(\Leftrightarrow\left[\left(4n+12\right)-2\left(2n+5\right)\right]⋮d\)

\(\Leftrightarrow\left[4n+12-4n-10\right]⋮d\)

\(\Leftrightarrow2⋮d\Leftrightarrow\orbr{\begin{cases}d=2\\d=1\end{cases}}\)

Dễ thấy \(\left(2n+5\right)\) không chia hết cho 2 \(\Rightarrow d=1\)

Vậy \(\left(4n+12,2n+5\right)=1\)​ hay \(\frac{4n+12}{2n+5}\) tối giản với mọi n.

23 tháng 4 2020

B1. Ta có: A= \(\frac{4n-1}{2n+3}+\frac{n}{2n+3}=\frac{4n-1+n}{2n+3}=\frac{5n-1}{2n+3}\)

=> 2A = \(\frac{10n-2}{2n+3}=\frac{5\left(2n+3\right)-17}{2n+3}=5-\frac{17}{2n+3}\)

Để A là số nguyên <=> 2A là số nguyên <=> \(\frac{17}{2n+3}\in Z\)

<=> 17 \(⋮\)2n + 3 <=> 2n + 3 \(\in\)Ư(17) = {1; -1; 17; -17}

Lập bảng:

 2n + 3 1 -1 17 -17
  n -1 -2 7 -10

Vậy ....

23 tháng 4 2020

Bài 2:

Gọi d là ƯCLN (7n-1; 6n-1) (d thuộc N*)

\(\Rightarrow\hept{\begin{cases}7n-1⋮d\\6n-1⋮d\end{cases}\Rightarrow\hept{\begin{cases}6\left(7n-1\right)⋮d\\7\left(6n-1\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}42n-6⋮d\\42n-7⋮d\end{cases}}}\)

=> 42n-7-42n+6 chia hết cho d

=> -1 chia hết cho d

mà d thuộc N* => d=1

=> ƯCLN (7n-1; 6n-1)=1

=> đpcm

Gọi d=ƯCLN(4n+3;8n+2)

=>\(\left\{{}\begin{matrix}4n+3⋮d\\8n+2⋮d\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}8n+6⋮d\\8n+2⋮d\end{matrix}\right.\)

=>\(8n+6-8n-2⋮d\)

=>\(4⋮d\)

mà 4n+3 lẻ

nên d=1

=>ƯCLN(4n+3;8n+2)=1

=>\(\dfrac{4n+3}{8n+2}\) là phân số tối giản

NV
12 tháng 1

Gọi \(d=ƯC\left(4n+3;8n+2\right)\) với \(d\in N\)*

\(\Rightarrow\left\{{}\begin{matrix}4n+3⋮d\\8n+2⋮d\end{matrix}\right.\)

\(\Rightarrow2\left(4n+3\right)-\left(8n+2\right)⋮d\)

\(\Rightarrow4⋮d\) \(\Rightarrow\left[{}\begin{matrix}d=1\\d=2\\d=4\end{matrix}\right.\)

Mặt khác do \(4n+3\) luôn lẻ, mà các số tự nhiên lẻ chỉ có các ước lẻ \(\Rightarrow d\) là số lẻ

\(\Rightarrow d=1\)

\(\Rightarrow4n+3\) và \(8n+2\) nguyên tố cùng nhau

\(\Rightarrow\dfrac{4n+3}{8n+2}\) là phân số tối giản

DD
4 tháng 3 2022

a) Đặt \(d=\left(n+3,n+4\right)\)

Suy ra \(\hept{\begin{cases}n+3⋮d\\n+4⋮d\end{cases}}\Rightarrow\left(n+4\right)-\left(n+3\right)=1⋮d\Rightarrow d=1\).

Do đó ta có đpcm. 

b) Đặt \(d=\left(2n+5,4n+11\right)\)

Suy ra \(\hept{\begin{cases}2n+5⋮d\\4n+11⋮d\end{cases}}\Rightarrow\left(4n+11\right)-2\left(n+5\right)=1⋮d\Rightarrow d=1\).

Do đó ta có đpcm. 

c) Đặt \(d=\left(3n+4,4n+5\right)\)

Suy ra \(\hept{\begin{cases}3n+4⋮d\\4n+5⋮d\end{cases}}\Rightarrow4\left(3n+4\right)-3\left(4n+5\right)=1⋮d\Rightarrow d=1\).

Do đó ta có đpcm. 

25 tháng 11 2023

Gọi d=ƯCLN(2n+3;4n+8)

=>\(\left\{{}\begin{matrix}4n+8⋮d\\2n+3⋮d\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}4n+8⋮d\\4n+6⋮d\end{matrix}\right.\Leftrightarrow4n+8-4n-6⋮d\)

=>\(2⋮d\)

mà 2n+3 lẻ

nên d=1

=>ƯCLN(2n+3;4n+8)=1

=>\(P=\dfrac{2n+3}{4n+8}\) là phân số tối giản với mọi n<>-2