K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\left(3-x\right)^{2022}>=0\forall x\)

=>\(\left(3-x\right)^{2022}+2022>=2022\forall x\)

=>\(\dfrac{20}{\left(3-x\right)^{2022}+2022}< =\dfrac{20}{2022}=\dfrac{10}{1011}\forall x\)

Dấu '=' xảy ra khi 3-x=0

=>x=3

6 tháng 5 2024

Bạn viết rõ lại đề nhé ! 

26 tháng 12 2022

đợi tý

18 tháng 8 2023

Đã trả lời rồi còn độ tí đồ ngull

17 tháng 12 2021

a) \(M=2022-\left|x-9\right|\le2022\)

\(maxM=2022\Leftrightarrow x=9\)

b) \(N=\left|x-2021\right|+2022\ge2022\)

\(minN=2022\Leftrightarrow x=2021\)

16 tháng 7 2023

P = (x^2 + 2x) - 2024
= (x^2 + 2x + 1) - 1 - 2024
= (x + 1)^2 - 2025

Với mọi giá trị của x, (x + 1)^2 luôn lớn hơn hoặc bằng 0. Do đó, giá trị nhỏ nhất của P là khi (x + 1)^2 đạt giá trị nhỏ nhất, tức là bằng 0.

Khi (x + 1)^2 = 0, ta có x + 1 = 0, từ đó suy ra x = -1.

Vậy, giá trị nhỏ nhất của biểu thức P là P = (-1 + 1)^2 - 2025 = -2025.

Ta có: \(\left|x\right|>=0\forall x\)

=>\(\left|x\right|+2023>=2023\forall x\)

=>\(\dfrac{2022}{\left|x\right|+2023}< =\dfrac{2022}{2023}\forall x\)

=>\(A< =\dfrac{2022}{2023}\forall x\)

Dấu '=' xảy ra khi |x|=0

=>x=0

Vậy: \(A_{max}=\dfrac{2022}{2023}\) khi x=0

8 tháng 12 2023

\(A=\dfrac{2022}{\left|x\right|+2023}\)

Ta thấy: \(\left|x\right|\ge0\forall x\)

\(\Rightarrow\left|x\right|+2023\ge2023\forall x\)

\(\Rightarrow\dfrac{1}{\left|x\right|+2023}\le\dfrac{1}{2023}\forall x\)

\(\Rightarrow A=\dfrac{2022}{\left|x\right|+2023}\le\dfrac{2022}{2023}\forall x\)

Dấu \("="\) xảy ra khi: \(x=0\)

Vậy \(Max_A=\dfrac{2022}{2023}\) khi \(x=0\).

16 tháng 12 2022

a: |x|+2003>=2003

=>A<=2022/2003

Dấu = xảy ra khi x=0

b: |x|+1>=1

=>(|x|+1)^10>=1

=>B>=2010

Dấu = xảy ra khi x=0

NV
26 tháng 12 2022

\(A=-\left(x^2+2xy+y^2\right)-\left(y^2-y+\dfrac{1}{4}\right)+\dfrac{8089}{4}\)

\(A=-\left(x+y\right)^2-\left(y-\dfrac{1}{2}\right)^2+\dfrac{8089}{4}\)

Do \(\left\{{}\begin{matrix}-\left(x+y\right)^2\le0\\-\left(y-\dfrac{1}{2}\right)^2\le0\end{matrix}\right.\) ; \(\forall x;y\)

\(\Rightarrow A\le\dfrac{8089}{4};\forall x;y\)

Vậy \(A_{max}=\dfrac{8089}{4}\) khi \(\left\{{}\begin{matrix}x+y=0\\y-\dfrac{1}{2}=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=\dfrac{1}{2}\end{matrix}\right.\)

26 tháng 12 2022

A = (x+5)2022 + | y - 2021| + 2022

vì ( x+5)2022 \(\ge\) 0; 

    |y-2021|   \(\ge\) 0

    2022      = 2022

Cộng vế với vế ta được : A = (x+5)2022+|y-2021|+2022\(\ge\) 2022

Vậy A(min) = 2022 dấu bằng xảy ra khi : \(\left\{{}\begin{matrix}x+5=0\\y-2021=0\end{matrix}\right.\)=>\(\left\{{}\begin{matrix}x=-5\\y=2021\end{matrix}\right.\)