s=3/5.9.13 3/9.13.17 ... 3/401.405.409 chứng minh s<1/120
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề đi nhé! Bài b dễ mà, gộp các số để làm thừa số chung sao cho tính ra = 121 là được
S = 31 + 32 + 33 + .. + 32016
S = (31 + 32 + 33 + 34 + 35) + ... + (32012 + 32013 + 32014 + 32015 + 32016)
S = 31.(1 + 3 + 32 + 33 + 34) + ... + 32012.(1 + 3 + 32 + 33 + 34)
S = 31.121 + ... + 32012.121
S = 121.(31 + ... + 32012)
Vì tích trên chứa 121 => S chia hết cho 121. Có gì không hiểu hỏi mình nhé :D
\(S=\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}+\dfrac{3}{13}+\dfrac{3}{14}\)
Ta thấy:
\(\dfrac{3}{10}>\dfrac{3}{15}\\\dfrac{3}{11}>\dfrac{3}{15}\\ \dfrac{3}{12}>\dfrac{3}{15}\\ \dfrac{3}{13}>\dfrac{3}{15}\\ \dfrac{3}{14}>\dfrac{3}{15} \)
\(\Rightarrow S=\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}+\dfrac{3}{13}+\dfrac{3}{14}>5\cdot\dfrac{3}{15}\\ S=\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}+\dfrac{3}{13}+\dfrac{3}{14}>1\left(1\right)\)
Mặt khác:
\(\dfrac{3}{10}< \dfrac{3}{9}\\ \dfrac{3}{11}< \dfrac{3}{9}\\ \dfrac{3}{12}< \dfrac{3}{9}\\ \dfrac{3}{13}< \dfrac{3}{9}\\ \dfrac{3}{14}>\dfrac{3}{9}\)
\(\Rightarrow S=\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}+\dfrac{3}{13}+\dfrac{3}{14}< 5\cdot\dfrac{3}{9}\\ S=\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}+\dfrac{3}{13}+\dfrac{3}{14}< \dfrac{5}{3}< 2\left(2\right)\)
Từ (1) và (2) ta có: \(1< S< 2\)
Lời giải:
$S=(3+3^2+3^3+3^4)+(3^5+3^6+3^7+3^8)+....+(3^{97}+3^{98}+3^{99}+3^{100})$
$=3(1+3+3^2+3^3)+3^5(1+3+3^2+3^3)+....+3^{97}(1+3+3^2+3^3)$
$=(1+3+3^2+3^3)(3+3^5+...+3^{97})$
$=40(3+3^5+...+3^{97})$
$=40.3(1+3^4+....+3^{96})$
$=120(1+3^4+...+3^{96})\vdots 120$
Do : \(\frac{3}{1.4}=\frac{1}{1}-\frac{1}{4};\frac{3}{4.7}=\frac{1}{4}-\frac{1}{7}\).... tuong tu ... \(\frac{3}{n\left(n+3\right)}=\frac{1}{n}-\frac{1}{n+3}\)
S= \(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{n-3}-\frac{1}{n}+\frac{1}{n}-\frac{1}{n+3}\)
S= \(1-\frac{1}{n+3}\)<1
=> S<1 (dpcm)
(do : 3/ 1.4 = 1/1 - 1/4; 3/4.7= 1/4 - 1/7 ...
S= 1- 1/4 + 1/4 + 1/4 - 1/7 + ... + 1/ n - 1/ (n+3)
S= 1- 1/ (n+3) <1
=> S <1 (dpcm)