CMR: A = 111....1 + 111....1 + 666....6 + 8 là số chính phương
(2n số 1) (n + 1 số 1) (n số 6)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(D=\frac{10^{2n}-1}{9}\)
\(E=\frac{10^{n+1}-1}{9}\)
\(F=6\cdot\frac{10^n-1}{9}\)
Do đó: \(D+E+F+8=\frac{10^{2n}+10^{n+1}+6\cdot10^n+64}{9}=\left(\frac{10^n+8}{3}\right)^2=\left[\left(33.3\right)6\right]^2\)
(lưu ý: tích (33..3 6)2 có n-1 số 3)
Vậy: D+E+F+8 là số chính phương(ĐPCM)
\(A=\frac{10^{2m}-1}{9};B=\frac{10^{m+1}-1}{9};C=6.\frac{10^m-1}{9}\)
\(A+B+C+8=\frac{10^{2m}-1+10^{m+1}-1+6.\left(10^m-1\right)+72}{9}\)
\(=\frac{10^{2m}+16.10^m+64}{9}=\frac{\left(10^m+8\right)^2}{9}=\left(\frac{10^m+8}{3}\right)^2\)
Do 1 + 0 + 0 +... + 0 + 8 = 9 chia hết cho 3 nên \(\frac{10^m+8}{3}\in Z\)
Vậy A+B+C+8 là số chính phương.
Đặt 111...1 (n c/s 1) = a => 10n = 9a + 1
Làm tương tự câu trên nhé
Đặt 111...1 (n c/s 1) = a = > \(10^n\)= 9a + 1
Làm tương tự như câu trên nha!
Đề bn tự ghi lại.
Ta biểu diển tổng A dưới dạng khác:
\(A=\frac{10^{2n}-1}{9}+\frac{10^{n+1}-1}{9}+6.\frac{10^n-1}{9}+8\)=\(\frac{\left(10^n\right)^2-1+10^n.10-1+10^n.6-6+72}{9}\)
\(=\frac{\left(10^n\right)^2+16.10^n+64}{9}=\left(\frac{10^n+8}{3}\right)^2\)
Mặt khác 10^n+8 luôn chia hết cho 3 nên biểu thức trong ngoặc là 1 số tự nhiên
=> A là scp