Cho A=1/1x2+1/3x4+1/5x6+1/7x8+...+1/59x60.Chứng tỏ A>7/12
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
một hình chữ nhật có chu vi 72cm chiều dài 15cm và chiều rộng 9cm thì hình chữ nhật trở thành hình vuông. Tính diện tích hình chữ nhật ban đầu
giải hộ mình nhé
\(M=\left(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+\frac{1}{7.8}+\frac{1}{9.10}\right)\)\(-\left(\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}\right)\)
\(M=\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\frac{1}{7}-\frac{1}{8}+\frac{1}{9}-\frac{1}{10}\right)\)\(-\left(\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}\right)\)
\(M=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\frac{1}{7}-\frac{1}{8}+\frac{1}{9}-\frac{1}{10}-\frac{1}{6}-\frac{1}{7}-\frac{1}{8}-\frac{1}{9}-\frac{1}{10}\)
\(M=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{2}{6}-\frac{2}{8}-\frac{2}{10}\)
\(M=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{3}-\frac{1}{4}-\frac{1}{5}\)
\(M=1-\frac{1}{2}-\frac{2}{4}\)
\(M=1-\frac{1}{2}-\frac{1}{2}\)
\(M=0\)
HOK TỐT
Cho A=\(\frac{1}{1x2}+\frac{1}{3x4}+\frac{1}{5x6}+....+\frac{1}{99x100}\)
Chứng minh rằng: 7/12<A<5/6
\(A=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+..+\frac{1}{99}-\frac{1}{100}\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)=\left(1+\frac{1}{2}+...+\frac{1}{100}\right)-2\cdot\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(=\left(1+\frac{1}{2}+...+\frac{1}{100}\right)-\left(1+\frac{1}{2}+...+\frac{1}{50}\right)=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)
Do \(\frac{1}{51}>\frac{1}{52}>...>\frac{1}{100}\Rightarrow A=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}>25\cdot\frac{1}{80}+25\cdot\frac{1}{100}=\frac{7}{12}\)
và \(A<10\cdot\frac{1}{50}+10\cdot\frac{1}{60}+...+10\cdot\frac{1}{90}=\frac{1}{5}+\frac{1}{6}+...+\frac{1}{9}=\frac{1879}{2520}<\frac{5}{6}\)
Vậy 7/12<A<5/6
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{9.10}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}\)
\(=\frac{9}{10}\)
chúc bn học tốt
\(1,27+2,77+4,27+5,77+...+31,27+32,47\)
\(=\left(1,27+32,77\right)+\left(2,77+31,27\right)+....+\left(16,27+17,77\right)\)
\(=34,04+34,04+....+34,04\)( 11 số hạng)
\(=34,04.11=374,44\)
chúc bn học tốt
\(A=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{7}-\dfrac{1}{8}=\dfrac{1}{2}-\dfrac{1}{8}=\dfrac{3}{8}\)
1/1x2+1/2x3+1/3x4+..+1/9x10
=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5+...-1/10
=1-1/10
=9/10
\(A=\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+\dfrac{1}{7.8}+...+\dfrac{1}{59.60}\)
\(A=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{7}-\dfrac{1}{8}+...+\dfrac{1}{59}-\dfrac{1}{60}\)
\(A=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{60}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+\dfrac{1}{8}+...+\dfrac{1}{60}\right)\)
\(A=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{60}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{30}\right)\)
\(A=\dfrac{1}{31}+\dfrac{1}{32}+\dfrac{1}{33}+...+\dfrac{1}{60}\)
Ta tách A thành 3 nhóm\(A=\left(\dfrac{1}{31}+\dfrac{1}{32}+...+\dfrac{1}{40}\right)+\left(\dfrac{1}{41}+\dfrac{1}{42}+...+\dfrac{1}{50}\right)+\left(\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{60}\right)\)\(A>\dfrac{1}{40}.10+\dfrac{1}{50}.10+\dfrac{1}{60}.10\)
\(A>\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}\)
\(A>\dfrac{37}{60}>\dfrac{7}{12}\)
\(\Rightarrow A>\dfrac{7}{12}\)