A=1+7+7 mũ 2+7 mũ 3+...+7 mũ 101. Chứng tỏ rằng A chia hết cho 8 và 57
M.n trả lời giúp mình nhanh nhé, mình đang hơi vội. Các bạn viết cả lời giải và đáp số nhé. Cảm ơn m.n nhìu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3+3^2+3^3+...+3^{2012}\)
\(=\left(3+3^2+3^3+3^4\right)+...+\left(3^{2009}+3^{2010}+3^{2011}+3^{2012}\right)\)
\(=3\left(1+3+3^2+3^3\right)+...+3^{2009}\left(1+3+3^2+3^3\right)\)
\(=40\left(3+...+3^{2009}\right)⋮40\)
a;
A = 120a + 36b
A = 12 x 10 x a + 12 x 3 x b
A = 12 x (10a + 3b) ⋮ 12 (đpcm)
b;
B = 57 - 56 + 55
B = 55.(52 - 5 + 1)
B = 55.(25 - 5 + 1)
B = 55.(20 + 1)
B = 55.21 ⋮ 21 (đpcm)
\(a=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)=\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{99}\left(1+2\right)=\)
\(=3\left(2+2^3+2^5+2^7+...+2^{99}\right)⋮3\)
( 3x + 1 )\(^3\)= 64
( 3x + 1 )\(^3\)= 4\(^3\)
=> 3x + 1 = 4
3x = 4 - 1
x = 3 : 3
x = 1
Vậy, x = 1
thank bạn nhé