Gọi M là tập hợp gồm tất cả các số tự nhiên có ít nhất hai chữ số và các chữ số đôi một khác nhau được lập từ các chữ số 1; 2; 3; 4; 5. Chọn ngẫu nhiên một số từ tập hợp M. Tính xác suất để số được chọn có tổng các chữ số bằng 10.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số có 4 chữ số có dạng
Số phần tử của không gian mẫu: n(S)=9.9.8.7=4536.
Gọi A: “ tập hợp các số tự nhiên có 4 chữ số phân biệt và lớn hơn 2500.”
TH1: a>2
Chọn a: có 7 cách chọn.
Chọn b: có 9 cách chọn.
Chọn c: có 8 cách chọn.
Chọn d: có 7 cách chọn.
Vậy trường hợp này có:7.9.8.7=3528 .
TH2: a=3; b>5
Chọn a: có 1 cách chọn.
Chọn b: có 4 cách chọn.
Chọn c: có 8cách chọn.
Chọn d: có 7 cách chọn.
Vậy trường hợp này có: 1.4.8.7=224 (số).
TH3: a=2; b=5; c>0
Chọn a: có 1 cách chọn.
Chọn b: có1 cách chọn.
Chọn c: có 7 cách chọn.
Chọn d: có 7 cách chọn.
Vậy trường hợp này có: 1.1.7.7=49(số).
TH4. a=2; b=5; c=0 ;d>0
Chọn a: có 1 cách chọn.
Chọn b: có 1 cách chọn.
Chọn c: có 1 cách chọn.
Chọn d: có 7 cách chọn.
Vậy trường hợp này có: 1.1.1.7=7(số).
Như vậy: n(A)=3528+224+49+7=3808
Chọn C.
Vì 120 = 12 x 10 = 3x4 x 5x2
Nên số tự nhiên lớn nhất thỏa mãn yêu cầu đề bài là: 5432.
Giả sử a > b > c > d
Khi đó ta có số tự nhiên lớn nhất là abcd và số tự nhiên nhỏ nhất là cdba
\(\Rightarrow\)abcd + dcba = 11330
Suy ra ta có a + d = 10 và b + c = 12
Vậy a + b + c + d = 10 + 12 = 22
Các bộ số có tổng bằng 10 là: (1;4;5);(2;3;5);(1;2;3;4)
\(\Rightarrow\) Có \(3!+3!+4!=36\) số có tổng bằng 10
Không gian mẫu: \(A_5^2+A_5^3+A_5^4+A_5^5=320\)
Xác suấtL \(P=\dfrac{36}{320}=\dfrac{9}{80}\)