Hai người thợ cùng làm chung một công việc thì sau 12 giờ sẽ xong. Nếu người thứ nhất làm 7 giờ và người thứ hai làm 4 giờ thì được một nửa công việc. Hỏi người thứ hai làm công việc đó một mình thì sau bao lâu sẽ hoàn thành công việc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình xin phép sửa lại một chút nha bạn:
Gọi thời gian người thứ hai hoàn thành công việc khi làm một mình là y(giờ)(ĐK: y>0)
Gọi thời gian người thứ nhất hoàn thành công việc khi làm một mình là x(giờ)(ĐK: x>0)
Trong 1 giờ, người thứ nhất làm được: \(\dfrac{1}{x}\)(công việc)
Trong 1 giờ, người thứ hai làm được \(\dfrac{1}{y}\)(công việc)
Trong 1 giờ, hai người làm được \(\dfrac{1}{12}\)(công việc)
Do đó, ta có phương trình: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\)
Trong 7 giờ người thứ nhất làm được \(7\cdot\dfrac{1}{x}=\dfrac{7}{x}\)(công việc)
Trong 4 giờ người thứ hai làm được \(4\cdot\dfrac{1}{y}=\dfrac{4}{y}\)(công việc)
Khi người thứ nhất làm trong 7 giờ và người thứ hai làm trong 4 giờ thì hai người làm được một nửa công việc nên ta có:
\(\dfrac{7}{x}+\dfrac{4}{y}=\dfrac{1}{2}\)
Do đó, ta có hệ phương trình sau:
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\\\dfrac{7}{x}+\dfrac{4}{y}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{7}{x}+\dfrac{7}{y}=\dfrac{7}{12}\\\dfrac{7}{x}+\dfrac{4}{y}=\dfrac{1}{2}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{3}{y}=\dfrac{7}{12}-\dfrac{1}{2}=\dfrac{1}{12}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=36\\\dfrac{1}{x}+\dfrac{1}{36}=\dfrac{1}{12}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=36\\\dfrac{1}{x}=\dfrac{1}{12}-\dfrac{1}{36}=\dfrac{1}{18}\end{matrix}\right.\)
=>x=18 và y=36
Vậy: Người thứ hai cần 36 giờ để hoàn thành công việc khi làm một mình
Gọi thời gian người thứ hai hoàn thành công việc khi làm một mình là y(giờ)(ĐK: y>0)
Gọi thời gian người thứ nhất hoàn thành công việc khi làm một mình là x(giờ)(ĐK: x>0)
Trong 1 giờ, người thứ nhất làm được: \(\dfrac{1}{x}\)(công việc)
Trong 1 giờ, người thứ hai làm được \(\dfrac{1}{y}\)(công việc)
Trong 1 giờ, hai người làm được \(\dfrac{1}{12}\)(công việc)
Do đó, ta có phương trình: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\)
Trong 7 giờ người thứ nhất làm được \(7\cdot\dfrac{1}{x}=\dfrac{7}{x}\)(công việc)
Trong 4 giờ người thứ hai làm được \(4\cdot\dfrac{1}{y}=\dfrac{4}{y}\)(công việc)
Khi người thứ nhất làm trong 7 giờ và người thứ hai làm trong 4 giờ thì hai người làm được một nửa công việc nên ta có:
\(\dfrac{7}{x}+\dfrac{4}{y}=\dfrac{1}{2}\)
Do đó, ta có hệ phương trình sau:
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\\\dfrac{7}{x}+\dfrac{4}{y}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{7}{x}+\dfrac{7}{y}=\dfrac{1}{12}\\\dfrac{7}{x}+\dfrac{4}{y}=\dfrac{1}{2}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{3}{y}=\dfrac{1}{12}-\dfrac{1}{2}=\dfrac{-5}{12}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=-\dfrac{36}{5}< 0\left(loại\right)\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\end{matrix}\right.\)
Do đó: Đề sai rồi bạn!
trong 1 giờ ba người thợ làm được số công việc là:
1:6=1/6 (công việc)
trong 1 giờ người thứ nhất làm được số phần công việc là:
1:12=1/12 (công việc)
trong 1 giờ người thứ hai làm được số phần công việc là:
1:16=1/16 (công việc)
trong 1 giờ người thứ ba làm xong số phần công việc là:
1/6-(1/12+1/16=1/48 (công việc)
Vậy một mình người thứ ba làm xong công việc thì sẽ hoàn thành trong:
1:1/48=48 (giờ)
Mỗi giờ 2 người làm chung thì được 1:7=1/7 phần công việc
Mỗi giờ người thứ nhất làm một mình thì được 1:12=1/12 phần công việc
Mỗi giờ người thứ hai làm được 1/7-1/12=5/84 phần công việc
Vậy người thứ 2 hoàn thành công việc số trong 1:5/84=84/5=16,8 giờ
Đáp số 16,8 giờ
Gọi thời gian người thứ hai làm một mình xong công việc là x(h)
Theo đề, ta có: 1/7+1/x=1/4
=>1/x=3/28
hay x=28/3
Phần việc làm được của Người Thứ Nhất trong 3 giờ là: 3/8
Phần việc làm được của Người Thứ Hai trong 3 giờ là: 3/12
Phần việc làm được của Người Thứ Ba trong 3 giờ là:
1‐3/8‐3/12 = (24‐9‐6)/24 = 9/24
Vậy phần việc làm được của Người Thứ Nhất trong 1 giờ là:
9/24 : 3 = 3/24 = 1/8
Để làm xong công việc một mình, Người Thứ Ba cần:
1:1/8 = 8 giờ
Phần việc làm được của Người Thứ Nhất trong 3 giờ là: 3/8
Phần việc làm được của Người Thứ Hai trong 3 giờ là: 3/12
Phần việc làm được của Người Thứ Ba trong 3 giờ là:
1‐3/8‐3/12 = (24‐9‐6)/24 = 9/24
Vậy phần việc làm được của Người Thứ Nhất trong 1 giờ là:
9/24 : 3 = 3/24 = 1/8
Để làm xong công việc một mình, Người Thứ Ba cần:
1:1/8 = 8 giờ
Hai người cùng làm trong \(4\)giờ thì được số phần công việc là:
\(4\div12=\frac{1}{3}\)(công việc)
Đổi: \(50\%=\frac{1}{2}\).
\(3\)giờ thì người thứ hai làm một mình được số phần công việc là:
\(\frac{1}{2}-\frac{1}{3}=\frac{1}{6}\)(công việc)
Mỗi giờ người thứ hai làm một mình được số phần công việc là:
\(\frac{1}{6}\div3=\frac{1}{18}\)(công việc)
Người thứ hai làm một mình thì xong công việc trong số giờ là:
\(1\div\frac{1}{18}=18\)(giờ)