\(\frac{a}{\sqrt{ab}+b}+\frac{b}{\sqrt{ab}+a}-\frac{a+b}{\sqrt{ab}}\)
rut gon
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tham khao nha
\(A=\left(\frac{\sqrt{a}}{\sqrt{ab}-b}+\frac{2\sqrt{a}+\sqrt{b}}{\sqrt{ab}-a}\right):\left(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}\right)\)
\(A=\left(\frac{\sqrt{a}}{\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}+\frac{2\sqrt{a}+\sqrt{b}}{\sqrt{a}\left(\sqrt{b}-\sqrt{a}\right)}\right):\left(\frac{\sqrt{b}+\sqrt{a}}{\sqrt{ab}}\right)\)
\(A=\left(\frac{\sqrt{a}}{\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}-\frac{2\sqrt{a}+\sqrt{b}}{\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)}\right).\frac{\sqrt{ab}}{\sqrt{b}+\sqrt{a}}\)
\(A=\frac{a-2\sqrt{ab}+b}{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}.\frac{\sqrt{ab}}{\sqrt{b}+\sqrt{a}}\)
\(A=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}.\frac{\sqrt{ab}}{\sqrt{b}+\sqrt{a}}\)
\(A=\frac{\sqrt{a}-\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)
vay \(A=\frac{\sqrt{a}-\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)
ĐK : tự ghi nha
\(\left(\frac{\sqrt{a}}{\sqrt{ab}-b}+\frac{2\sqrt{a}+\sqrt{b}}{\sqrt{ab}-a}\right):\left(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}\right)\)
\(\sqrt{\frac{a}{b}}+\sqrt{ab}+\frac{a}{b}\sqrt{\frac{b}{a}}\)
\(=\sqrt{\frac{a}{b}}+\sqrt{ab}+\sqrt{\frac{a^2b}{b^2a}}\)
\(=\sqrt{\frac{a}{b}}+\sqrt{ab}+\sqrt{\frac{a}{b}}\)
\(=2\sqrt{\frac{a}{b}}+\sqrt{ab}\)
a) B= \(\frac{1}{\sqrt{a}}\)(ĐKXĐ: a,b>0) B) Khi a= \(6+2\sqrt{5}\)thì B=\(\frac{1}{\sqrt{\left(\sqrt{5}+1\right)^2}}\)=\(\frac{1}{\sqrt{5}+1}\) C) Do \(\sqrt{a}>0\)\(\Rightarrow\frac{1}{\sqrt{a}}>0\)\(\Rightarrow\frac{1}{\sqrt{a}}>-1\)
\(\frac{a-b}{\sqrt{a}-\sqrt{b}}+\frac{\sqrt{a}^3+\sqrt{b}^3}{a-b}\)
\(=\sqrt{a}+\sqrt{b}+\frac{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\)
\(=\sqrt{a}+\sqrt{b}+\frac{a-\sqrt{ab}+b}{\sqrt{a}-\sqrt{b}}\)
\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}+\frac{a-\sqrt{ab}+b}{\sqrt{a}-\sqrt{b}}\)
\(=\frac{a-b+a-\sqrt{ab}+b}{\sqrt{a}-\sqrt{b}}\)
\(=\frac{2a-\sqrt{ab}}{\sqrt{a}-\sqrt{b}}\)
\(P=\left(\frac{3\sqrt{a}}{a+\sqrt{ab}+b}-\frac{3a}{a\sqrt{a}-b\sqrt{b}}+\frac{1}{\sqrt{a}-\sqrt{b}}\right):\frac{\left(a-1\right)\left(\sqrt{a}-\sqrt{b}\right)}{2a+2\sqrt{ab}+2b}\)
\(=\left(\frac{3\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)}{\left(a+\sqrt{ab}+b\right)\left(\sqrt{a}-\sqrt{b}\right)}-\frac{3a}{\left(a+\sqrt{ab}+b\right)\left(\sqrt{a}-\sqrt{b}\right)}+\frac{\left(a+\sqrt{ab}+b\right)}{\left(a+\sqrt{ab}+b\right)\left(\sqrt{a}-\sqrt{b}\right)}\right).\frac{2\left(a+\sqrt{ab}+b\right)}{\cdot\left(a-1\right)\left(\sqrt{a}-\sqrt{b}\right)}\)
\(=\frac{3a-3\sqrt{ab}-3a+a+\sqrt{ab}+b}{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}.\frac{2\left(a+\sqrt{ab}+b\right)}{\left(a-1\right)\left(\sqrt{a}-\sqrt{b}\right)}\)
\(=\frac{2\left(a-2\sqrt{ab}+b\right)\left(a+\sqrt{ab}+b\right)}{\left(\sqrt{a}-\sqrt{b}\right)^2\left(a-1\right)\left(a+\sqrt{ab}+b\right)}\)
\(=\frac{2}{a-1}\)
A=\(\frac{a\sqrt{a}+b\sqrt{b}-\left(a+b\right)\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}\)=\(\frac{-a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}\)=\(\frac{-\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}\)=\(-1\)
ĐKXĐ: \(a,b>0\)