Tìm x,y biết: \(2^x\)+ 624 = \(5^y\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do y thuộc N => 5y lẻ => 2x lẻ => x=0 =>2x =1 =>5y=625
=>5y=55
=>y=5
Vậy x=0, y=5
Minfnh không biết đáp án sao nhưng theo mình phân tích thì :
2x = 2.2.2.2.2...2.2 = 624
ta cần tìm số thừa số 2 để tích đó = 624
Nhưng phân tích 624 ra thừa số nguyên tố thì không phải chỉ toàn số 2 nên không thỏa mãn . vậy không có x
Vì x,y thuộc N suy ra 5 y >624
suy ra 5 y có chữ số tận cùng là 5
suy ra 2 x có chữ số tận cùng là 1
ta thấy nếu x=0 thì 2 x=1,nếu x>0 thì 2 x có chữ số tận cùng là chữ số chẵn
mà 2 xcó chữ số tận cùng là 1 suy ra x=0
thay vào ta có:2 0+624=5 y
1+624=5 y
625=5 y
5 4=5 y
suy ra y=4 vậy x=0,y=4
ta có : \(^{2^x}\)chia hết cho 2 suy ra \(^{2^x}\) là số chẵn
suy ra \(^{2^x}\)+624 là số chẵn
mà \(5^y\)là số lẻ
suy ra \(2^x\)+624 =\(5^y\)(vô lý)
vậy ko tồn tại x:y thỏa mãn
đây là cách của mình nhớ k đúng cho mình nhé
vế phải luôn lẻ mọi Y
vế trái phải lẻ vậy x=0 (duy nhất chưa đủ)
1+625=5^y
625=5^?=5^y
y=?
Nếu\(x\in\)N* thì 2x chẵn mà 624 chẵn nên 2x + 624 hay 5y chẵn (vô lý vì 5y lẻ)
=> x\(\notin\)N* ; x = 0 => 5y = 20 + 624 = 1 + 624 = 625 = 53 => y = 3
Vậy x = 0 ; y = 3
\(2^x+624>624\)
\(\Rightarrow y>0\)
\(\Rightarrow5^y\)có tận cùng là 5
\(\Rightarrow2^x\)có tận cùng là 1
\(\Rightarrow x=0\)
\(\Rightarrow5^y=625=5^4\)
\(\Rightarrow y=4\)
Vậy x = 0 ; y = 4 .