cho 2017 số hữu tỉ trong đó tổng bất kỳ 3 số nào cũng âm.có thể kết luạn tất cả các sồ đó am ko
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi các số cần tìm theo thứ tự từ bé đến lớn : a1,a2,...,a100
Ta có a1.a2.a100<0
=> Cả ba số cùng âm
hoặc a1 âm và a2; a100 dương ( không thể theo thứ tự khác vì từ dầu ta đã nói từ bé đến lớn )
+) a2 là số dương => a3 ,a4 ,..., a100 đều là số dương ( vì đã từ bé đến lớn ) => mâu thuẫn vì tích 3 số bất kì <0
=> Trường hợp ****( a100 là số âm )
=> 100 số đều là số âm
- Tích của 2 số âm là 1 số dương mà có 50 cặp
=> Tích của 100 số trên đều là số dương
Gọi các số cần tìm theo thứ tự từ bé đến lớn là : \(a_1;a_2;a_3;...;a_{100}\)
Ta có : \(a_1\cdot a_2\cdot a_{100}< 0\)
=> Cả ba số cùng âm
hoặc \(a_1\)âm và \(a_2;a_{100}\)là số dương \((\)không thể thiếu theo thứ tự khác vì từ đầu ta đã nói từ bé đến lớn\()\)
+ \(a_2\)là số dương => \(a_3;a_4;...;a_{100}\)đều là số dương \((\)vì đã từ bé đến lớn\()\)=> mâu thuẫn vì tích ba số bất kì đều < 0
=> Trường hợp **** \((a_{100}\)là số âm\()\)
=> 100 số đề là số âm
Tích của hai số âm là 1 số dương mà có 50 cặp
=> Tích 100 số trên là số dương
Gọi \(q_1,q_2,...,q_n\left(q_i\inℚ,\forall i=\overline{1,n}\right)\). Theo đề bài, ta có \(q_1q_2...q_n\inℤ\) và \(q_i+q_j\inℤ,\forall i\ne j;i,j=\overline{1,n}\). Không mất tính tổng quát, giả sử \(q_1< q_2< ...< q_n\)
Ta thấy \(q_1+q_2\inℤ\) và \(q_2+q_3\inℤ\) nên \(q_1-q_3\inℤ\). Mà \(q_1+q_3\inℤ\) nên nếu ta đặt \(q_1-q_3=v\) và \(q_1+q_3=u\) với \(u,v\inℤ\) thì \(q_1=\dfrac{u+v}{2};q_3=\dfrac{u-v}{2}\). Do \(q_1+q_2=\dfrac{u+v+2q_2}{2}\) và \(q_3+q_2=\dfrac{u-v+2q_2}{2}\) cũng là các số nguyên, hơn nữa \(u-v\equiv u+v\left(mod2\right)\) nên ta chỉ cần suy ra \(u+v+2q_1⋮2\) hay \(u+v\) là số chẵn, cũng tức là \(q_1=\dfrac{u+v}{2}\) là số nguyên. Một cách tương tự, ta sẽ chứng minh được \(q_i\inℤ,\forall i=\overline{1,n}\) (đpcm)
Gọi các số cần tìm theo thứ tự từ bé -> lớn là a1; a2; a3; ...; a100
- Ta có a1 . a2 . a100 < 0
=> Cả 3 số cùng âm
hoặc a1 âm và a2; a100 dương ( không thể theo thứ tự khác vì từ đầu ta đã nói là từ bé -> lớn )
+ a2 là số dương => a3; a4; ....; a100 đều là số dương ( vì đã từ bé => lớn ) => mâu thuẫn vì tích 3 số bất kì đều < 0
=> Trường hợp **** ( a100 là số âm )
=> 100 số đề là số âm.
- Tích của 2 số âm là 1 số dương mà có 50 cặp
=> tích 100 số trên là số dương
- Gọi các số cần tìm theo thứ tự từ bé -> lớn là : a1 ; a2 ; a3 ; ... a100
- Ta có : a1 ; a2 ; a3 ; a100 < 0
=> Cả 3 số cùng âm
hoặc a1 âm và a2;a100 dương ( không thể theo thứ tự khác vì từ đầu ta đã nói là từ bé -> lớn )
+ ; a2 là số dương => a3 ; a4 ; a100 đều là số dương ( vì đã từ bé -> lớn ) -> mâu thuẫn vì tích 3 số bất kì đều < 0
=> Trường hợp ( a100 là số âm )
=> 100 số đề là số âm.
- Tích của 2 số âm là 1 số dương mà có 50 cặp => tích 100 số trên là số dương