K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4

loading...  

a) Xét hai tam giác vuông: ∆BDH và ∆BHA có:

∠B chung

⇒ ∆BDH ∽ ∆BHA (g-g)

b) Xét hai tam giác vuông: ∆AHB và ∆ADH có:

∠A chung

⇒ ∆AHB ∽ ∆ADH (g-g)

⇒ AH/AD = AB/AH

⇒ AH² = AD.AB

18 tháng 8 2018

B A C D E H

a)  Áp dụng hệ thức lượng vào 2 tam giác vuông: AHB và AHC ta có:

\(AH^2=AD.AB\)

\(AH^2=AE.AC\)

suy ra:\(AD.AB=AE.AC\)

b)  \(AD.AB=AE.AC\)

=>   \(\frac{AD}{AC}=\frac{AE}{AB}\)

Xét tam giác AED và tam giác ABC có:

\(\widehat{A}\)chung

\(\frac{AD}{AC}=\frac{AE}{AB}\)(cmt)

suy ra: \(\Delta AED~\Delta ABC\)

1) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABH vuông tại H có HD là đường cao ứng với cạnh huyền AB, ta được:

\(AD\cdot AB=AH^2\)(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔACH vuông tại H có HE là đường cao ứng với cạnh huyền AC, ta được:

\(AE\cdot AC=AH^2\)(2)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

hay \(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)

Xét ΔADE vuông tại A và ΔACB vuông tại A có 

\(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)(cmt)

nên ΔADE\(\sim\)ΔACB(c-g-c)

30 tháng 10 2021

vip đấy 

 

7 tháng 3 2021

khó vãi

7 tháng 3 2021

A C H D E M N B O K

a: Xét ΔABH và ΔCAH có

góc ABH=góc CAH

góc AHB=góc CHA

=>ΔABH đồng dạng với ΔCAH

b: ΔAHB vuông tại H có HD là đường cao

nên AD*AB=AH^2

ΔACH vuông tại H có HE là đường cao

nên AE*AC=AH^2=AD*AB

13 tháng 1 2018

a, Áp dụng hệ thức giữa cạnh và đường cao trong các tam giác vuông

∆AHC và ∆AHB ta có:

AE.AC =  A H 2 = AD.AB => ∆AHC  ~ ∆AHB(c.g.c)

b. Áp dụng hệ thức giữa cạnh và đường cao trong tam giác vuông ∆ABC tính được AH = 3cm => DE = 3cm

Trong ∆AHB vuông ta có:

tan A B C ^ = A H H B =>  A B C   ^ ≈ 56 0 , S A D E = 27 13 c m 2

 

 

 

a: Xét ΔHAC vuông tại A và ΔBAC vuông tại A có

góc C chung

=>ΔHAC đồng dạng với ΔBAC

b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)

AH=3*4/5=2,4cm

BH=3^2/5=1,8cm

c: AD*AB=AH^2

AE*AC=AH^2

=>AD*AB=AE*AC

a: Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10cm

Áp dụng hệ thức lượng trong tam giác vuông ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB\cdot AC=AH\cdot BC\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=4.8\left(cm\right)\\BH=3.6\left(cm\right)\\CH=6.4\left(cm\right)\end{matrix}\right.\)

b: 

Áp dụng hệ thức lượng trong tam giác vuông ΔAHC vuông tại H có HE là đường cao ứng với cạnh huyền AC, ta được:

\(AE\cdot AC=AH^2\left(1\right)\)

Áp dụng hệ thức lượng trong tam giác vuông ΔABH vuông tại A có HD là đường cao ứng với cạnh huyền BA, ta được:

\(AD\cdot AB=AH^2\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\) suy ra \(AE\cdot AC=AD\cdot AB\)

hay \(\dfrac{AE}{AB}=\dfrac{AD}{AC}\)

Xét ΔAED vuông tại A và ΔABC vuông tại A có 

\(\dfrac{AE}{AB}=\dfrac{AD}{AC}\)

Do đó: ΔAED\(\sim\)ΔABC

16 tháng 6 2018

xét tứ giác AEHD có

góc DAE = 90 độ( tam giác ABC vuông tại A)

HEA = 90 dộ (gt)

góc HDA= 90 đọ (gt)

=> AEHD là hình chữ nhật( dhnb hcn)

=> AH=DE( t/c hcn)

16 tháng 6 2018

c) +b)

gọi giao điểm của hai đường thẳng DE và AH là o

=>oa=oe ( t/c hcn)

=> góc OAE= góc OEA( t/c tam giác cân)

có góc OAE +  C= 90 độ

góc OEA + EDA = 90 độ

=> góc ADE= góc C

có góc ADE + OEA = 90 độ C + B =90 độ

=> góc OEA = góc B

xét tam giác ADE vuông tại A và tam giác ACB vuông tại A có:

góc OEA = góc B

góc ADE= góc C

=> tam giác ADE dồng dạng vs tam giác ACB (g.g)

=> AD/AC=AE/AB

=> AD.AB=AE.AC

a: góc AEH=góc ADH=góc DAE=90 độ

=>AEHD nội tiếp

b: Xét ΔABH vuông tại H và ΔAHD vuông tại D có

góc BAH chung

=>ΔABH đồng dạng với ΔAHD

c: ΔAHC vuông tại H có HE vuông góc AC

nên HE^2=AE*EC

31 tháng 10 2021

 b: Xét ΔABC vuông tại A có AH là đường cao

nên \(HB\cdot HC=AH^2\left(1\right)\)

Xét ΔABH vuông tại H có HD là đường cao

nên \(AD\cdot AB=AH^2\left(2\right)\)

Xét ΔAHC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\left(3\right)\)

Từ (1), (2) và (3) suy ra \(HB\cdot HC=AD\cdot AB=AE\cdot AC\)