Cho tam giác ABC vuông tại A , đường cao AH . Gọi D,E lần lượt là hình chiếu của H trên cánh AB , AC . Chứng mình hai tấm giác BDH và BHA đồng dạng và AH²=AD.AB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng hệ thức lượng vào 2 tam giác vuông: AHB và AHC ta có:
\(AH^2=AD.AB\)
\(AH^2=AE.AC\)
suy ra:\(AD.AB=AE.AC\)
b) \(AD.AB=AE.AC\)
=> \(\frac{AD}{AC}=\frac{AE}{AB}\)
Xét tam giác AED và tam giác ABC có:
\(\widehat{A}\)chung
\(\frac{AD}{AC}=\frac{AE}{AB}\)(cmt)
suy ra: \(\Delta AED~\Delta ABC\)
1) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABH vuông tại H có HD là đường cao ứng với cạnh huyền AB, ta được:
\(AD\cdot AB=AH^2\)(1)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔACH vuông tại H có HE là đường cao ứng với cạnh huyền AC, ta được:
\(AE\cdot AC=AH^2\)(2)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
hay \(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)
Xét ΔADE vuông tại A và ΔACB vuông tại A có
\(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)(cmt)
nên ΔADE\(\sim\)ΔACB(c-g-c)
a: Xét ΔABH và ΔCAH có
góc ABH=góc CAH
góc AHB=góc CHA
=>ΔABH đồng dạng với ΔCAH
b: ΔAHB vuông tại H có HD là đường cao
nên AD*AB=AH^2
ΔACH vuông tại H có HE là đường cao
nên AE*AC=AH^2=AD*AB
a, Áp dụng hệ thức giữa cạnh và đường cao trong các tam giác vuông
∆AHC và ∆AHB ta có:
AE.AC = A H 2 = AD.AB => ∆AHC ~ ∆AHB(c.g.c)
b. Áp dụng hệ thức giữa cạnh và đường cao trong tam giác vuông ∆ABC tính được AH = 3cm => DE = 3cm
Trong ∆AHB vuông ta có:
tan A B C ^ = A H H B => A B C ^ ≈ 56 0 , S A D E = 27 13 c m 2
a: Xét ΔHAC vuông tại A và ΔBAC vuông tại A có
góc C chung
=>ΔHAC đồng dạng với ΔBAC
b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
AH=3*4/5=2,4cm
BH=3^2/5=1,8cm
c: AD*AB=AH^2
AE*AC=AH^2
=>AD*AB=AE*AC
a: Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10cm
Áp dụng hệ thức lượng trong tam giác vuông ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB\cdot AC=AH\cdot BC\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=4.8\left(cm\right)\\BH=3.6\left(cm\right)\\CH=6.4\left(cm\right)\end{matrix}\right.\)
b:
Áp dụng hệ thức lượng trong tam giác vuông ΔAHC vuông tại H có HE là đường cao ứng với cạnh huyền AC, ta được:
\(AE\cdot AC=AH^2\left(1\right)\)
Áp dụng hệ thức lượng trong tam giác vuông ΔABH vuông tại A có HD là đường cao ứng với cạnh huyền BA, ta được:
\(AD\cdot AB=AH^2\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\) suy ra \(AE\cdot AC=AD\cdot AB\)
hay \(\dfrac{AE}{AB}=\dfrac{AD}{AC}\)
Xét ΔAED vuông tại A và ΔABC vuông tại A có
\(\dfrac{AE}{AB}=\dfrac{AD}{AC}\)
Do đó: ΔAED\(\sim\)ΔABC
xét tứ giác AEHD có
góc DAE = 90 độ( tam giác ABC vuông tại A)
HEA = 90 dộ (gt)
góc HDA= 90 đọ (gt)
=> AEHD là hình chữ nhật( dhnb hcn)
=> AH=DE( t/c hcn)
c) +b)
gọi giao điểm của hai đường thẳng DE và AH là o
=>oa=oe ( t/c hcn)
=> góc OAE= góc OEA( t/c tam giác cân)
có góc OAE + C= 90 độ
góc OEA + EDA = 90 độ
=> góc ADE= góc C
có góc ADE + OEA = 90 độ C + B =90 độ
=> góc OEA = góc B
xét tam giác ADE vuông tại A và tam giác ACB vuông tại A có:
góc OEA = góc B
góc ADE= góc C
=> tam giác ADE dồng dạng vs tam giác ACB (g.g)
=> AD/AC=AE/AB
=> AD.AB=AE.AC
a: góc AEH=góc ADH=góc DAE=90 độ
=>AEHD nội tiếp
b: Xét ΔABH vuông tại H và ΔAHD vuông tại D có
góc BAH chung
=>ΔABH đồng dạng với ΔAHD
c: ΔAHC vuông tại H có HE vuông góc AC
nên HE^2=AE*EC
b: Xét ΔABC vuông tại A có AH là đường cao
nên \(HB\cdot HC=AH^2\left(1\right)\)
Xét ΔABH vuông tại H có HD là đường cao
nên \(AD\cdot AB=AH^2\left(2\right)\)
Xét ΔAHC vuông tại H có HE là đường cao
nên \(AE\cdot AC=AH^2\left(3\right)\)
Từ (1), (2) và (3) suy ra \(HB\cdot HC=AD\cdot AB=AE\cdot AC\)
a) Xét hai tam giác vuông: ∆BDH và ∆BHA có:
∠B chung
⇒ ∆BDH ∽ ∆BHA (g-g)
b) Xét hai tam giác vuông: ∆AHB và ∆ADH có:
∠A chung
⇒ ∆AHB ∽ ∆ADH (g-g)
⇒ AH/AD = AB/AH
⇒ AH² = AD.AB