K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2016

bạn làm thế này nha : 
Câu 1: x = y .( 2x-1) 
vì x, y nguyên nên x chia hết cho 2x -1 
suy ra 2.x cũng chia hết cho 2x-1 
hay ( 2x - 1 ) + 1 chia hết cho 2x -1 
suy ra 1 cũng phải chia hết cho 2x - 1 
vậy 2x- 1 là ước của 1 ( là 1 và -1) 
ta xét : 
2x-1 = 1 suy ra x = 1 suy ra y = 1 
2x-1 = -1 suy ra x = 0 , suy ra y = 0 
vậy pt này có 2 nghiệm (1,1) và (0,0) 

Bài 2: a)Thay a + c = 2b vào 2bd = c(b + d) => (a + c)d = c(b + d) 
=> ad + cd = bc + cd => ad = bc hay a/b = c/d

b)Giả sử số có 3 chữ số là =111.a ( a là chữ số khác 0)
Gọi số số hạng của tổng là n , ta có :
Hay n(n+1) =2.3.37.a 
Vậy n(n+1) chia hết cho 37 , mà 37 là số nguyên tố và n+1<74 ( Nếu n = 74 không thoả mãn )
Do đó n=37 hoặc n+1 = 37
Nếu n=37 thì n+1 = 38 lúc đó  không thoả mãn 
Nếu n+1=37 thì n = 36 lúc đó  thoả mãn 
Vậy số số hạng của tổng là 36

Bài 4:

Biến đổi bt tương đương : (x^2-1)/2 =y^2 
Ta có: vì x,y là số nguyên dương nên 
+) x>y và x phải là số lẽ. 
Từ đó đặt x=2k+1 (k nguyên dương); 
Biểu thức tương đương 2*k*(k+1)=y^2 (*); 
Để ý rằng: 
Y là 1 số nguyên tố nên y^2 sẽ là 1 số nguyên dương mà nó có duy nhất 3 ước là : 
{1,y, y^2} ; 
từ (*) dễ thấy y^2 chia hết cho 2, dĩ nhiên y^2 không thể là 2, vậy chỉ có thể y=2 =>k=1; 
=>x=3. 
Vậy ta chỉ tìm được 1 cặp số nguyên tố thoả mãn bài ra là x=3 và y=2 (thoả mãn).




10 tháng 9 2016

đúng rồi  , có thể kết bạn với  mình không 

CHUYÊN ĐỀ BỒI DƯỠNG HỌC SINH GIỎI VÀ NĂNG KHIẾUCâu 1. Chứng minh √7 là số vô tỉ.Câu 2.a) Chứng minh: (ac + bd)2 + (ad – bc)2 = (a2 + b2)(c2 + d2)b) Chứng minh bất dẳng thức Bunhiacôpxki: (ac + bd)2 ≤ (a2 + b2)(c2 + d2)Câu 3. Cho x + y = 2. Tìm giá trị nhỏ nhất của biểu thức: S = x2 + y2.Câu 4.a) Cho a ≥ 0, b ≥ 0. Chứng minh bất đẳng thức Cauchy: b) Cho a, b, c > 0. Chứng minh rằng: c) Cho a, b > 0 và 3a + 5b = 12....
Đọc tiếp

CHUYÊN ĐỀ BỒI DƯỠNG HỌC SINH GIỎI VÀ NĂNG KHIẾU

Câu 1. Chứng minh √7 là số vô tỉ.

Câu 2.

a) Chứng minh: (ac + bd)2 + (ad – bc)2 = (a2 + b2)(c2 + d2)

b) Chứng minh bất dẳng thức Bunhiacôpxki: (ac + bd)2 ≤ (a2 + b2)(c2 + d2)

Câu 3. Cho x + y = 2. Tìm giá trị nhỏ nhất của biểu thức: S = x2 + y2.

Câu 4.

a) Cho a ≥ 0, b ≥ 0. Chứng minh bất đẳng thức Cauchy: 

b) Cho a, b, c > 0. Chứng minh rằng: 

c) Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P = ab.

Câu 5. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức: M = a3 + b3.

Câu 6. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức: N = a + b.

Câu 7. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)

Câu 8. Tìm liên hệ giữa các số a và b biết rằng: |a + b| > |a - b|

Câu 9.

a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4a

b) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 8

Câu 10. Chứng minh các bất đẳng thức:

a) (a + b)2 ≤ 2(a2 + b2)

b) (a + b + c)2 ≤ 3(a2 + b2 + c2)

1
6 tháng 6 2016

Cau 9

(a+1)2=a2+2a+1  

Mà a2+1 >hoặc=4a[Bất đẳng thức Cô-si

Suy ra  2a+4a>hoac=4a

Vay.....

I. Trắc nghiệm khách quan (4 điểm) Trong mỗi câu từ câu 1 đến câu 16 đều có 4 phương án trả lời A, B, C, D; trong đó chỉ có một phương án đúng. Hãy khoanh tròn chữ cái đứng trước phương án đúng. Câu 1: Kết quả của phép tính 25 6 − − là: A. 31 B. 19 C. −31 D. −19. Câu 2: Cho x = −−+ − ( ) 135 . Số x bằng: A. 1 B. 3 C. −3 D. −9. Câu 3: Kết quả của phép tính: 45 9(13 5) − + là: A. 473 B. 648 C....
Đọc tiếp

I. Trắc nghiệm khách quan (4 điểm) Trong mỗi câu từ câu 1 đến câu 16 đều có 4 phương án trả lời A, B, C, D; trong đó chỉ có một phương án đúng. Hãy khoanh tròn chữ cái đứng trước phương án đúng. Câu 1: Kết quả của phép tính 25 6 − − là: A. 31 B. 19 C. −31 D. −19. Câu 2: Cho x = −−+ − ( ) 135 . Số x bằng: A. 1 B. 3 C. −3 D. −9. Câu 3: Kết quả của phép tính: 45 9(13 5) − + là: A. 473 B. 648 C. −117 D. 117. Câu 4: Số nguyên x thoả mãn 1 6 19 − x = là A. 24 B. −3 C. 2 D. 1. Câu 5: Kết quả của phép tính 2007 2.( 1) − là A. −4014 B. 4014 C. −2 D. 1. Câu 6: Kết quả của phép tính 6 5 32 ( 3) : ( 3) ( 2) : 2 − − +− là: A. 1 B. −5 C. 0 D. −2. Câu 7: Biết 2 3 của số a bằng 7,2. Số a bằng: A. 10,8 C. 3 2 B. 1,2 D. 142 30 . Câu 8: 0,25% bằng A. 1 4 B. 1 400 C. 25 100 D. 0,025. Câu 9: Tỉ số phần trăm của 5 và 8 là: A. 3% B. 62,5% C. 40% D. 160% Câu 10: Kết quả của phép tính 3 ( 15). 1 5 − − là: A. 0 B. -2 C. −10 D. 1 5 . Câu 11: Cho 3 11 : 11 3 x = thì: A. x = −1 B. x =1 C. 121 9 x = D. 9 121 x = . 

3
10 tháng 9 2017

Cậu có thể cách dòng ra được không? Tớ nhìn không biết câu nào với câu nào cả

Kết quả phép tính 4 phần 5 + 5 phần 6
Câu 1. Chứng minh √7 là số vô tỉ.Câu 2.a) Chứng minh: (ac + bd)2 + (ad – bc)2 = (a2 + b2)(c2 + d2)b) Chứng minh bất dẳng thức Bunhiacôpxki: (ac + bd)2 ≤ (a2 + b2)(c2 + d2)Câu 3. Cho x + y = 2. Tìm giá trị nhỏ nhất của biểu thức: S = x2 + y2.Câu 4.a) Cho a ≥ 0, b ≥ 0. Chứng minh bất đẳng thức Cauchy: b) Cho a, b, c > 0. Chứng minh rằng: c) Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P = ab.Câu 5. Cho a + b =...
Đọc tiếp

Câu 1. Chứng minh √7 là số vô tỉ.

Câu 2.

a) Chứng minh: (ac + bd)2 + (ad – bc)2 = (a2 + b2)(c2 + d2)

b) Chứng minh bất dẳng thức Bunhiacôpxki: (ac + bd)2 ≤ (a2 + b2)(c2 + d2)

Câu 3. Cho x + y = 2. Tìm giá trị nhỏ nhất của biểu thức: S = x2 + y2.

Câu 4.

a) Cho a ≥ 0, b ≥ 0. Chứng minh bất đẳng thức Cauchy: 

b) Cho a, b, c > 0. Chứng minh rằng: 

c) Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P = ab.

Câu 5. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức: M = a3 + b3.

Câu 6. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức: N = a + b.

Câu 7. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)

Câu 8. Tìm liên hệ giữa các số a và b biết rằng: |a + b| > |a - b|

Câu 9.

a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4a

b) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 8

1
24 tháng 12 2015

C1

Giả sử căn 7 là số hữu tỉ Vậy căn 7 bằng a/b.         Suy ra 7 bằng a bình / b bình.  Suy ra a bình bằng 7b bình Suy ra a chia hết cho 7 Gọi a bằng 7k suy ra a bình bằng 7b bình Suy ra (2k) bình bằng 2b bình suy ra 4k bình bằng 2b bình suy ra 2k bình bằng b bình Suy ra ƯCLN(a,b)=2 Trái với đề bài =>căn 7 là số vô tỉ

 

Câu 1. Chứng minh √7 là số vô tỉ.Câu 2.a) Chứng minh: (ac + bd)2 + (ad – bc)2 = (a2 + b2)(c2 + d2)b) Chứng minh bất dẳng thức Bunhiacôpxki: (ac + bd)2 ≤ (a2 + b2)(c2 + d2)Câu 3. Cho x + y = 2. Tìm giá trị nhỏ nhất của biểu thức: S = x2 + y2.Câu 4.a) Cho a ≥ 0, b ≥ 0. Chứng minh bất đẳng thức Cauchy: b) Cho a, b, c > 0. Chứng minh rằng: c) Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P = ab.Câu 5. Cho a + b =...
Đọc tiếp

Câu 1. Chứng minh √7 là số vô tỉ.

Câu 2.

a) Chứng minh: (ac + bd)2 + (ad – bc)2 = (a2 + b2)(c2 + d2)

b) Chứng minh bất dẳng thức Bunhiacôpxki: (ac + bd)2 ≤ (a2 + b2)(c2 + d2)

Câu 3. Cho x + y = 2. Tìm giá trị nhỏ nhất của biểu thức: S = x2 + y2.

Câu 4.

a) Cho a ≥ 0, b ≥ 0. Chứng minh bất đẳng thức Cauchy: 

b) Cho a, b, c > 0. Chứng minh rằng: 

c) Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P = ab.

Câu 5. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức: M = a3 + b3.

Câu 6. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức: N = a + b.

Câu 7. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)

Câu 8. Tìm liên hệ giữa các số a và b biết rằng: |a + b| > |a - b|

Câu 9.

a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4a

b) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 8

0
Câu 1 :a ) Tìm các số hữu tỉ x ; y ; z biết xy = 2/3 ; yz = 0,6 ; zx = 0,625b) tính tổng A = 9 + 99 + 999 + ... + 999...9(2011 chữ số 9)Câu 2 :Cho 13 số hữu tỉ , trong đó tích của 3 số bất kì nào cũng là một số âm . Chứng minh rằng 13 số đã cho đều là số âmCâu 3 :a) Cho M = (1002 +12 ) / ( 100 . 1) + ( 992+ 22) / ( 99 . 2 ) + ( 982+ 32 ) / ( 98 . 3 )+ ...+ ( 522 + 492 ) / ( 52 . 49 ) + (512 + 502) / ( 51.50 )và N = 1/2 + 1/3 + ... +...
Đọc tiếp

Câu 1 :

a ) Tìm các số hữu tỉ x ; y ; z biết xy = 2/3 ; yz = 0,6 ; zx = 0,625

b) tính tổng A = 9 + 99 + 999 + ... + 999...9(2011 chữ số 9)

Câu 2 :

Cho 13 số hữu tỉ , trong đó tích của 3 số bất kì nào cũng là một số âm . Chứng minh rằng 13 số đã cho đều là số âm

Câu 3 :

a) Cho M = (1002 +12 ) / ( 100 . 1) + ( 992+ 22) / ( 99 . 2 ) + ( 982+ 32 ) / ( 98 . 3 )+ ...+ ( 522 + 492 ) / ( 52 . 49 ) + (512 + 502) / ( 51.50 )

và N = 1/2 + 1/3 + ... + 1/100 + 1/101 . Tính M / N

Câu 4 :

a) so sánh A và B biết : A = ( 2011) / (căn 2012 ) + ( 2012 ) / (căn 2011) và B = căn 2011 + căn 2012

b) Có thể tìm được một số tự nhiên là lũy thừa của 9 có tận cùng là 0001

Câu 5 : Cho đoạn thẳng AB , điểm C nằm giữa A và B . Trên cùng một nửa mặt phẳng bờ AB vẽ 2 tam giác đều ACD và BEC . Gọi M , N lần lượt là trung điểm của AE và BD . Chứng minh :

a) AE = BD

b) Tam giác MNC đều

0
31 tháng 7 2023

B,D

Câu 1. Chứng minh √7 là số vô tỉ.Câu 2.a) Chứng minh: (ac + bd)2 + (ad – bc)2 = (a2 + b2)(c2 + d2)b) Chứng minh bất dẳng thức Bunhiacôpxki: (ac + bd)2 ≤ (a2 + b2)(c2 + d2)Câu 3. Cho x + y = 2. Tìm giá trị nhỏ nhất của biểu thức: S = x2 + y2.Câu 4.a) Cho a ≥ 0, b ≥ 0. Chứng minh bất đẳng thức Cauchy: b) Cho a, b, c > 0. Chứng minh rằng: c) Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P = ab.Câu 5. Cho a + b =...
Đọc tiếp

Câu 1. Chứng minh √7 là số vô tỉ.

Câu 2.

a) Chứng minh: (ac + bd)2 + (ad – bc)2 = (a2 + b2)(c2 + d2)

b) Chứng minh bất dẳng thức Bunhiacôpxki: (ac + bd)2 ≤ (a2 + b2)(c2 + d2)

Câu 3. Cho x + y = 2. Tìm giá trị nhỏ nhất của biểu thức: S = x2 + y2.

Câu 4.

a) Cho a ≥ 0, b ≥ 0. Chứng minh bất đẳng thức Cauchy: 

b) Cho a, b, c > 0. Chứng minh rằng: 

c) Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P = ab.

Câu 5. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức: M = a3 + b3.

Câu 6. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức: N = a + b.

Câu 7. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)

Câu 8. Tìm liên hệ giữa các số a và b biết rằng: |a + b| > |a - b|

Câu 9.

a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4a

b) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 8

Câu 10. Chứng minh các bất đẳng thức:

a) (a + b)2 ≤ 2(a2 + b2)

b) (a + b + c)2 ≤ 3(a2 + b2 + c2)

 Ai làm được xin gọi bằng sư phụ ạ .

Trên đấy là toán thi vào lớp 10 loại khó , giàng cho câu cuối cùng 1 điểm 1 câu đấy .

0