K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2024

Em nói rõ yêu cầu của đề bài ra em nhé.

NV
12 tháng 1 2022

1.

\(x^4+4y^4=x^4+4x^2y^2+y^4-4x^2y^2=\left(x^2+2y^2\right)^2-\left(2xy\right)^2\)

\(=\left(x^2-2xy+2y^2\right)\left(x^2+2xy+2y^2\right)\)

Do x, y nguyên dương nên số đã cho là SNT khi:

\(x^2-2xy+2y^2=1\Rightarrow\left(x-y\right)^2+y^2=1\)

\(y\in Z^+\Rightarrow y\ge1\Rightarrow\left(x-y\right)^2+y^2\ge1\)

Đẳng thức xảy ra khi và chỉ khi \(x=y=1\)

Thay vào kiểm tra thấy thỏa mãn

2. \(N=n^4+4^n\)

- Với n chẵn hiển nhiên N là hợp số

- Với \(n\) lẻ: \(\Rightarrow n=2k+1\)

\(N=n^4+4^n=n^4+4^{2k+1}=n^4+4.4^{2k}+4n^2.4^k-n^2.4^{k+1}\)

\(=\left(n^2+2.4^k\right)^2-\left(n.2^{k+1}\right)^2=\left(n^2+2.4^k-n.2^{k+1}\right)\left(n^2+2.4^k+n.2^{k+1}\right)\)

Mặt khác:

\(n^2+2.4^k-n.2^{k+1}\ge2\sqrt{2n^2.4^k}-n.2^{k+1}=2\sqrt{2}n.2^k-n.2^{k+1}\)

\(=n.2^{k+1}\left(\sqrt{2}-1\right)\ge2\left(\sqrt{2}-1\right)>1\)

\(\Rightarrow N\) là tích của 2 số dương lớn hơn 1

\(\Rightarrow\) N là hợp số

NV
12 tháng 1 2022

Bài 4 chắc không có cách "đại số" nào (tức là dựa vào lý luận chia hết tổng quát) để giải. Mình nghĩ vậy (có lẽ có, nhưng mình ko biết).

Chắc chỉ sáng lọc và loại trừ theo quy tắc kiểu: do đổi vị trí bất kì đều là SNT nên không thể chứa các chữ số chẵn và chữ số 5, như vậy số đó chỉ có thể chứa các chữ số 1,3,7,9

Nó cũng không thể chỉ chứa các chữ số  3 và 9 (sẽ chia hết cho 3)

Từ đó sàng lọc được các số: 113 (và các số đổi vị trí), 337 (và các số đổi vị trí)

a: \(\Leftrightarrow n-5\in\left\{1;-1;3;-3\right\}\)

hay \(n\in\left\{6;4;8;2\right\}\)

b: \(\Leftrightarrow3n-18+18⋮n-6\)

\(\Leftrightarrow n-6\in\left\{1;-1;2;-2;3;-3;6;-6;9;-9;18;-18\right\}\)

hay \(n\in\left\{7;5;8;4;9;3;12;0;15;-3;24;-12\right\}\)

8 tháng 3 2022

a)  \(-3⋮n-5\) 

\(\Rightarrow n-5\inƯ\left(-3\right)=\left\{-1;1;-3;3\right\}\)

Có bảng sau:

n-5-11-33
n4628

Vậy...

b)

\(\begin{matrix}3n⋮n-6\\n-6⋮n-6\end{matrix}\)\(\Leftrightarrow\left\{{}\begin{matrix}3n⋮n-6\\3n-18⋮n-6\end{matrix}\right.\){18\(⋮\) n-6

\(\Leftrightarrow n-6\inƯ\left(18\right)=\left\{1,2,3,6,9,18,-1,-2,-3,-6,-9,-18\right\}\)

Có bảng sau:

n-61-12-23-36-69-918-18
n75849312015-324-12

Vậy...

 

11 tháng 1 2017

Để \(\frac{3n+4}{n-1}\)là số nguyên thì:

\(3n+4⋮n-1\)

Mà \(3\left(n-1\right)⋮n-1\)

nên \(3n+4-3\left(n-1\right)⋮n-1\\ \Rightarrow7⋮n-1\)

\(\Rightarrow\left(n-1\right)\inƯ\left(7\right)=\left\{1;-1;7;-7\right\}\)

\(\Rightarrow n\in\left\{2;0;8;-6\right\}\)

Bài kia bạn nhân 3n+1 lên 2 lần rồi làm tương tự

25 tháng 2 2020

1,S=2-4-6+8+10-12-14+16+.......+1994-1996-1998+2000

  S =(2-4-6+8)+(10-12-14+16)+......+(1994-1996-1998+2000)

  S= 0 +0+........+0

  S=0

2/ Vì 13 chia hết cho x-2

-> x-2 thuộc Ư(13)={1;13;-1;-13}

ta có bảng

x-2    1  13   -1 -13
x   3   15     1  -11

3/ Vì -15chia hết cho n-3->n-3 thuộc Ư(-15)={1;3;5;15;-1;-3;-5;-15}

Ta có bảng

n-3  1  3  5 15 -1 -3 -5-15
n4681820-2-12

4/ n-2 thuộc Ư(3)={1;3;-1;-3}

ta có bảng

n-2  1  3 -1 -3
n351-1
7 tháng 2 2016

tet lo phet qua kho

b: Để A nguyên thì 2n+3 chia hết cho n

=>3 chia hết cho n

=>n thuộc {1;-1;3;-3}

c: Th1: n=2

=>n+3=5(nhận)

TH2: n=2k+1

=>n+3=2k+4=2(k+2)

=>Loại

d: Gọi d=ƯCLN(2n+3;2n+5)

=>2n+5-2n-3 chia hết cho d

=>2 chia hết cho d

mà 2n+3 lẻ

nên d=1

=>PSTG

12 tháng 7 2016

Tìm tất cả các số tự nhiên n để :

a/ n^2 +12n là số nguyên tố

b/ 3^n +6 là số nguyên tố

\(P=\dfrac{n^3+3n^2+2n}{6}+\dfrac{2n+1}{1-2n}\)

Vì n^3+3n^2+2n=n(n+1)(n+2) là tích của 3 số liên tiếp

nên n^3+3n^2+2n chia hết cho 3!=6

=>Để P nguyên thì 2n+1/1-2n nguyên

=>2n+1 chia hết cho 1-2n

=>2n+1 chia hết cho 2n-1

=>2n-1+2 chia hết cho 2n-1

=>\(2n-1\in\left\{1;-1;2;-2\right\}\)

=>\(n\in\left\{1;0;\dfrac{3}{2};-\dfrac{1}{2}\right\}\)