Cho AMNP vuông tại M, đường cao MH. Trên tia NP lấy điểm D sao cho DN = NM. Đường vuông góc với NP tại D cắt MP tại E.
a) Chứng minh rằng: ANME = ANDE
b) Gọi A là giao điểm của MD và NE. Chứng minh NA là đường cao của AMND
c) Chứng minh: Tia MD là tia phân giác của HMP
d) Kẻ PF NE tại F. Chứng minh rằng: MN, DE, PF đồng qui.
a: Xét ΔMNE vuông tại M và ΔDNE vuông tại D có
NE chung
NM=ND
Do đó: ΔMNE=ΔDNE
b: ΔMNE=ΔDNE
=>EM=ED
=>E nằm trên đường trung trực của MD(1)
ta có: NM=ND
=>N nằm trên đường trung trực của MD(2)
Từ (1),(2) suy ra NE là đường trung trực của MD
=>NE\(\perp\)MD tại A
=>NA là đường cao của ΔDNM
c: Ta có: \(\widehat{PMD}+\widehat{NMD}=\widehat{NMP}=90^0\)
\(\widehat{DMH}+\widehat{NDM}=90^0\)(ΔHDM vuông tại H)
mà \(\widehat{NMD}=\widehat{NDM}\)(NM=ND)
nên \(\widehat{PMD}=\widehat{DMH}\)
=>MD là phân giác của góc HMP
d: Gọi K là giao điểm của PF và NM
Xét ΔPKN có
NF,PM là các đường cao
NF cắt PM tại E
Do đó:E là trực tâm của ΔPKN
=>KE\(\perp\)NP
mà ED\(\perp\)NP
nên K,E,D thẳng hàng
=>NM,DE,PF đồng quy tại K