Chứng tỏ rằng
a)2^4n-1 chia hết 5 (n € N)
b) 9^51+1 chia hết 10
Tìm x € Q , biết
(x-1/5).(x+3/4)>0
(x-1/5).(x+3/4).(x+1)>0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2:
a: Gọi d=ƯCLN(4n+7;2n+3)
=>\(\left\{{}\begin{matrix}4n+7⋮d\\2n+3⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4n+7⋮d\\4n+6⋮d\end{matrix}\right.\Leftrightarrow1⋮d\)
=>d=1
=>ƯCLN(4n+7;2n+3)=1
b: Gọi \(d=ƯCLN\left(3n+5;6n+9\right)\)
=>\(\left\{{}\begin{matrix}3n+5⋮d\\6n+9⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6n+10⋮d\\6n+9⋮d\end{matrix}\right.\)
=>\(1⋮d\)
=>d=1
=>Đây là phân số tối giản
Bài 1.
a) 2x2 + 3( x - 1 )( x + 1 ) - 5x( x + 1 )
= 2x2 + 3( x2 - 1 ) - 5x2 - 5x
= 2x2 + 3x2 - 3 - 5x2 - 5x
= -5x - 3
b) 4( x - 1 )( x + 5 ) - ( x - 2 )( x + 5 ) - 3( x - 1 )( x + 2 )
= 4( x2 + 4x - 5 ) - ( x2 + 3x - 10 ) - 3( x2 + x - 2 )
= 4x2 + 16x - 20 - x2 - 3x + 10 - 3x2 - 3x + 6
= 10x - 4
Bài 2.
a) ( 8 - 5x )( x + 2 ) + 4( x - 2 )( x + 1 ) + 2( x - 2 )( x + 2 ) = 0
<=> -5x2 - 2x + 16 + 4( x2 - x - 2 ) + 2( x2 - 4 ) = 0
<=> -5x2 - 2x + 16 + 4x2 - 4x - 8 + 2x2 - 8 = 0
<=> x2 - 6x = 0
<=> x( x - 6 ) = 0
<=> x = 0 hoặc x = 6
b) ( x + 3 )( x + 2 ) - ( x - 2 )( x + 5 ) = 0
<=> x2 + 5x + 6 - ( x2 + 3x - 10 ) = 0
<=> x2 + 5x + 6 - x2 - 3x + 10 = 0
<=> 2x + 16 = 0
<=> 2x = -16
<=> x = -8
Bài 3.
A = ( n2 + 3n - 1 )( n + 2 ) - n3 + 2
= n3 + 2n2 + 3n2 + 6n - n - 2 - n3 + 2
= 5n2 + 5n
= 5n( n + 1 ) chia hết cho 5 ( đpcm )
B = ( 6n + 1 )( n + 5 ) - ( 3n + 5 )( 2n - 1 )
= 6n2 + 30n + n + 5 - ( 6n2 - 3n + 10n - 5 )
= 6n2 + 31n + 5 - 6n2 - 7n + 5
= 24n + 10
= 2( 12n + 5 ) chia hết cho 2 ( đpcm )
bài 1:a,\(2x^2+3\left(x-1\right)\left(x+1\right)-5x\left(x+1\right)\)
\(=2x^2+3x^2-3-5x^2-5x\)
\(=-3-5x\)
b.\(4\left(x-1\right)\left(x+5\right)-\left(x-2\right)\left(x+5\right)-3\left(x-1\right)\left(x+2\right)\)
\(=4\left(x^2+4x-5\right)-\left(x^2+3x-10\right)-3\left(x^2+x-2\right)\)
\(=4x^2+16x-20-x^2-3x+10-3x^2-3x+6\)
\(=10x-4\)
\(\left(8-5x\right)\left(x+2\right)+4\left(x-2\right)\left(x+1\right)+2\left(x-2\right)\left(x+2\right)=0\)
\(8x+16-5x^2-10x+4\left(x^2+x-2x-2\right)+2\left(x^2+2x-2x-4\right)=0\)
\(-2x+16-5x^2+4x^2-4x-8+2x^2-8=0\)
\(x^2-6x=0\)
\(x\left(x-6\right)=0\)
\(\orbr{\begin{cases}x=0\\x-6=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=6\end{cases}}}\)
Bài 1:
a) \(3\left(x+5\right)=x-7\)
\(\Leftrightarrow3x+15=x-7\)
\(\Leftrightarrow3x+15-x=-7\)
\(\Leftrightarrow2x+15=-7\)
\(\Leftrightarrow2x=-22\)
\(\Leftrightarrow x=-11\)
Vậy \(x=-11\)
Bài 2:
\(\left|x+2\right|-14=-9\)
\(\Leftrightarrow\left|x+2\right|=5\)
Chia 2 trường hợp:
\(\Leftrightarrow\orbr{\begin{cases}x+2=5\\x+2=-5\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-7\end{cases}}}\)
Vậy \(x\in\left\{3;-7\right\}\)
Hơi vội, sai thì thôi nhé!
Bài 11 :
a) -10 < x < 8
x = {-9; -8; -7; -6; -5; -4; -3; -2; -1; 0; 1; 2; 3; 4; 5; 6; 7}
Tổng của các số nguyên x là :
= (-9) + (-8) + (-7) + ... + 5 + 6 + 7
= (-9) + (-8) + [(-7) + 7] + [(-6) + 6] ... + [(-1) + 1] + 0
= (-9) + (-8) + 0 + 0 + ... + 0 + 0
= -17
b) -4 ≤ x < 4
x = {-4; -3; -2; -1; 0; 1; 2; 3}
Tổng của các số nguyên x là :
= (-4) + (-3) + (-2) + (-1) + 0 + 1 + 2 + 3
= (-4) + [(-3) + 3] + [(-2) + 2] + [(-1) + 1] + 0
= (-4) + 0 + 0 + 0 + 0
= -4
c) | x | < 6
-6 < x < 6
x = {-5; -4; -3; -2; -1; 0; 1; 2; 3; 4; 5}
Tổng của các số nguyên x là :
= (-5) + (-4) + (-3) + ... + 3 + 4 + 5
= [(-5) + 5] + [(-4) + 4] + [(-3) + 3] + ... + 0
= 0 + 0 + 0 + ... + 0
= 0
Bài 12 :
a) -9 ≤ x < 10
x = {-9; -8; -7; -6; -5; -4; -3; -2; -1; 0; 1; 2; 3; 4; 5; 6; 7; 8; 9}
Tổng của các số nguyên x là :
= (-9) + (-8) + (-7) + ... + 7 + 8 + 9
= [(-9) + 9] + [(-8) + 8] + [(-7) + 7] + ... + [(-2) + 2] + [(-1) + 1] + 0
= 0 + 0 + 0 + ... + 0 + 0 + 0
= 0
b) -6 ≤ x < 5
x = {-6; -5; -4; -3; -2; -1; 0; 1; 2; 3; 4}
Tổng của các số nguyên x là :
= (-6) + (-5) + (-4) + (-3) + ... + 3 + 4
= (-6) + (-5) + [(-4) + 4] + [(-3) + 3] + ... + 0
= (-6) + (-5) + 0 + 0 + ... + 0
= -11
c) | x | < 5
-5 < x < 5
x = {-4; -3; -2; -1; 0; 1; 2; 3; 4;}
Tổng của các số nguyên x là :
= (-4) + (-3) + ... + 3 + 4
= [(-4) + 4] + [(-3) + 3] + ... + 0
= 0 + 0 + ... + 0
= 0
Bài 13 :
a) (a - b + c) - (a + c) = -b
a - b + c - a - c = -b
(a - a) + (c - c) - b = -b
0 + 0 - b = -b
-b = -b
b) (a + b) - (b - a) + c = 2a + c
a + b - b + a + c = 2a + c
a + a + (b - b) + c = 2a + c
2a + 0 + c = 2a + c
2a + c = 2a + c
c) -(a + b - c) + ( a - b - c) = -2b
-a - b + c + a - b - c = -2b
(-a + a) - b - b - (c - c) = -2b
0 - b - b - 0 = -2b
-b - b = -2b
-2b = -2b
d) a(b + c) - a(b + d) = a(c - d)
(a.b + a.c) - (a.b + a.d) = a(c - d)
a.b + a.c - a.b - a.d = a(c - d)
(a.b - a.b) + a.c - a.d = a(c - d)
0 + a.c - a.d = a(c - d)
0 + a(c - d) = a(c - d)
a(c - d) = a(c - d)
Bài 14 :
a) M = a(a + 2) - a(a - 5) - 7
M = (a.a + a.2) - (a.a - a.5) - 7
M = a.a + a.2 - a.a + a.5 -7
M = (a.a - a.a) + a.2 + a.5 - 7
M = 0 + a.2 + a.5 - 7
M = a.2 + a.5 - 7
M = a.(2 + 5) - 7
M = a.7 - 7
Vì a.7 ⋮ 7 và 7 ⋮ 7
Nên M ⋮ 7
b) N = (a - 2) . (a + 3) - (a - 3) . (a + 2)
TH1 : Nếu a là số chẵn thì :
⇒ \(\left[{}\begin{matrix}\text{(a - 2) : chẵn }\\\text{(a + 3) : lẻ }\\\text{ (a - 3) : lẻ }\\\text{(a + 2) : chẵn}\end{matrix}\right.\)
⇒ \(\left[{}\begin{matrix}\text{(a - 2) . (a + 3) = chẵn . lẻ = chẵn}\\\text{(a - 3) . (a + 2) = lẻ . chẵn = chẵn}\end{matrix}\right.\)
⇒ (a - 2) . (a + 3) - (a - 3) . (a + 2)
= chẵn - chẵn
= chẵn
TH2 : Nếu a là số lẻ thì :
⇒ \(\left[{}\begin{matrix}\text{(a - 2) : lẻ }\\\text{(a + 3) : chẵn }\\\text{ (a - 3) : chẵn }\\\text{(a + 2) : lẻ}\end{matrix}\right.\)
⇒ \(\left[{}\begin{matrix}\text{(a - 2) . (a + 3) = lẻ . chẵn = chẵn}\\\text{(a - 3) . (a + 2) = chẵn . lẻ = chẵn}\end{matrix}\right.\)
⇒ (a - 2) . (a + 3) - (a - 3) . (a + 2)
= chẵn - chẵn
= chẵn
Bài 15 :
Bài này để mai mk làm nha bn đoàn thanh huyền, vì giờ mk khá mệt vì sáng làm nhiều bài quá, mk ko chép mấy cái đề vì nó vướng víu với làm mk khó chiụ, nên bn chịu khó xem lại đề rồi xem bài mk nha bn đoàn thanh huyền
Có ai giúp mình trả lời nhanh câu hỏi này với
mk lp 5 ko biets bạn