1.Tìm các số a, b, c biết: \(a^2\)+ 4b+ 4 = 0; \(b^2\)+ 4c + 4 = 0 và \(c^2\) + 4a + 4 = 0
2.Cho ab+bc+ca = abc, a+b+c =0 .Tính \(\dfrac{1}{a^2}\)+ \(\dfrac{1}{b^2}\) + \(\dfrac{1}{c^2}\)
mong mọi người giải giúp vs ạ! Em cảm ơn nhiều
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\dfrac{2}{3}a=\dfrac{3}{4}b=\dfrac{4}{5}c\)
\(\Leftrightarrow\dfrac{a}{\dfrac{3}{2}}=\dfrac{b}{\dfrac{4}{3}}=\dfrac{c}{\dfrac{5}{4}}\)
mà a+b-c=38
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{\dfrac{3}{2}}=\dfrac{b}{\dfrac{4}{3}}=\dfrac{c}{\dfrac{5}{4}}=\dfrac{a+b-c}{\dfrac{3}{2}+\dfrac{4}{3}-\dfrac{5}{4}}=\dfrac{38}{\dfrac{19}{12}}=24\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{a}{\dfrac{3}{2}}=24\\\dfrac{b}{\dfrac{4}{3}}=24\\\dfrac{c}{\dfrac{5}{4}}=24\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=24\cdot\dfrac{3}{2}=36\\b=24\cdot\dfrac{4}{3}=32\\c=24\cdot\dfrac{5}{4}=30\end{matrix}\right.\)
Vậy:(a,b,c)=(36;32;30)
lớp 6 gì kinh thế cái này lớp 8
M=a^3+b^3+ab
M=(a+b)[(a+b)^2-3ab)]+ab=1-2ab
a+b=1=> b=1-a
M=1-2a(1-a)=1+2a^2-2a
M=2.[(a^2-a+1/2)]+1
-=2(a-1/2)^2+1/2
GTLN của M=1/2 khi a=b=1/2
a) Vì \(2a=5b\) nên \(\dfrac{a}{5}=\dfrac{b}{2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{5}=\dfrac{b}{2}=\dfrac{3a+4b}{3.5+2.4}=\dfrac{46}{23}=2\)
\( \Rightarrow a=2.5=10;\\b=2.2=4\)
Vậy \(a = 10 ; b = 4\)
b) Vì a : b : c = 2 : 4 : 5
\( \Rightarrow \dfrac{a}{2} = \dfrac{b}{4} = \dfrac{c}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\( \Rightarrow \dfrac{a}{2} = \dfrac{b}{4} = \dfrac{c}{5}= \dfrac{{a + b - c}}{{2 + 4 - 5}}= \dfrac{3}{1}=3\)
\( \Rightarrow a = 3.2=6;\\b = 3.4=12;\\c =3.5=15.\)
Vậy \(a=6;b=12;c=15\).
Gọi k = \(\frac{a-1}{2}=\frac{b+3}{4}=\frac{c-5}{6}\)
=> \(\begin{cases}a=2k+1\\b=4k-3\\c=6k+5\end{cases}\)
=> 5c - 4b - 3a = 30k + 25 - 16k + 12 - 6k - 3 = 8k + 34
=> 8k + 34 = 50
=> k = 2
=> \(\begin{cases}a=5\\b=5\\c=17\end{cases}\)
Đặt \(\left(\dfrac{1}{a};\dfrac{1}{2b};\dfrac{1}{c}\right)=\left(x;y;z\right)\Rightarrow x+y+z=0\)
\(M=\dfrac{x^2}{yz}+\dfrac{y^2}{zx}+\dfrac{z^2}{xy}=\dfrac{x^3+y^3+z^3}{xyz}\)
\(=\dfrac{\left(x+y\right)^3-3xy\left(x+y\right)+z^3}{xyz}=\dfrac{-z^3-3xy\left(-z\right)+z^3}{xyz}\)
\(=\dfrac{3xyz}{xyz}=3\)
1)Từ đề bài:
`=>a^2+4b+4+b^2+4c+4+c^2+4a+4=0`
`<=>(a+2)^2+(b+2)^2+(c+2)^2=0`
`<=>a=b=c-2`
`ab+bc+ca=abc`
`<=>1/a+1/b+1/c=1`
`<=>(1/a+1/b+1/c)^2=1`
`<=>1/a^2+1/b^2+1/c^2+2/(ab)+2/(bc)+2/(ca)=1`
`<=>1/a^2+1/b^2+1/c^2=1-(2/(ab)+2/(bc)+2/(ca))`
`a+b+c=0`
Chia 2 vế cho `abc`
`=>1/(ab)+1/(bc)+1/(ca)=0`
`=>2/(ab)+2/(bc)+2/(ca)=0`
`=>1/a^2+1/b^2+1/c^2=1-0=1`