K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Các biến cố chắc chắn là C

Biến cố ngẫu nhiên là D;B

Biến cố không thể là A

b: Vì A là biến cố không thể

nên P(A)=0

B: "Lấy được thẻ có số là số nguyên tố"

=>B={2}

=>n(B)=1

=>\(P\left(B\right)=\dfrac{1}{4}\)

18 tháng 4

Mọi người giải giúp mình với mình cần gấp ngày mai mình hộp bài rồi 

A là biến cố chắc chắn

=>P(A)=1

B là biến cố ko thể

=>P(B)=0

C={(3;1);(4;1);(4;2);(5;1);(5;2);(5;3);(6;1);(6;2);(6;3);(6;4)}

=>n(C)=10

=>P(C)=10/30=1/3

Biến cố D là biến cố chắc chăn

=>P(D)=1

E là biến cố ko thể

=>P(E)=0

n(F)=3*2=6

=>P(F)=6/30=1/5

loading...  loading...  

HQ
Hà Quang Minh
Giáo viên
15 tháng 9 2023

Vì 5 quả bóng có kích thước và khối lượng giống nhau nên 5 kết quả của phép thử có khả năng xảy ra bằng nhau.

- Biến cố \(A\) xảy ra khi ta lấy được quả bóng có số 5 hoặc 13 nên có 2 kết quả thuận lợi cho \(A\). Xác suất của biến có \(A\) là:

\(P\left( A \right) = \frac{2}{5}\).

- Vì không có quả bóng nào đánh số chia hết cho 3 nên số kết quả thuận lợi của biến cố \(B\) là 0. Xác suất của biến cố \(B\) là

\(P\left( B \right) = \frac{0}{5} = 0\).

- Vì cả 5 quả bóng đều đánh số lớn hơn 4 nên số kết quả thuận lợi của biến cố \(C\) là 5. Xác suất của biến cố \(C\) là

\(P\left( C \right) = \frac{5}{5} = 1\).

HQ
Hà Quang Minh
Giáo viên
15 tháng 9 2023

Vì 3 viên bi xanh, 4 viên bi đỏ và 5 viên b vàng có kích thước và khối lượng như nhau nên 12 kết quả của phép thử có khả năng xảy ra bằng nhau.

- Biến cố \(A\) xảy ra khi ta lấy được viên bi màu xanh nên có 3 kết quả thuận lợi cho \(A\). Xác suất của biến có \(A\) là:

\(P\left( A \right) = \frac{3}{{12}} = \frac{1}{4}\).

- Biến cố \(B\) xảy ra khi ta lấy được viên bi không có màu vàng nên viên bi lấy được có thể có màu xanh hoặc màu đỏ. Do đó, có 7 kết quả thuận lợi cho \(B\). Xác suất của biến có \(B\) là:

\(P\left( B \right) = \frac{7}{{12}}\).

22 tháng 8 2023

tham khảo

a) \(A_1\)  là biến cố cả 4 quả bóng lấy ra đều có màu xanh; \(P\left(A_1\right)=\dfrac{C^4_5}{C^4_{15}}\)

\(A_2\)  là biến cố cả 4 quả bóng lấy ra đều có màu đỏ; \(P\left(A_2\right)=\dfrac{C^4_6}{C^4_{15}}\)

\(A_3\)  là biến cố cả 4 quả  bóng lấy ra đều có màu vàng; \(P\left(A_3\right)=\dfrac{C^4_4}{C^4_{15}}\)

Khi đó:\(A=A_1\cup A_2\cup A_3\)

 Mà \(A_1,A_2,A_3\) là các biến cố xung khắc nên\(P\left(A\right)=P\left(A_1\right)+P\left(A_2\right)+P\left(A_3\right)=\dfrac{1}{65}\)

b) \(B_1\)  là biến cố có 2 quả bóng xanh, 1 quả bóng đỏ, 1 quả bóng vàng; \(P\left(B_1\right)=\dfrac{C^2_5.C^1_6.C^1_4}{C^4_{15}}\)

\(B_2\)  là biến cố có 1 quả bóng xanh, 2 quả bóng đỏ, 1 quả bóng vàng; \(P\left(B_2\right)=\dfrac{C^1_5.C^2_6.C^1_4}{C^4_{15}}\)

\(B_3\)  là biến cố có 1 quả bóng xanh, 1 quả bóng đỏ, 2 quả bóng vàng; \(P\left(B_3\right)=\dfrac{C^1_5.C^1_6.C^2_4}{C^4_{15}}\)

Khi đó:\(B=B_1\cup B_2\cup B_3\)

Mà \(B_1,B_2,B_3\) là các biến cố xung khắc nên

\(P\left(B\right)=P\left(B_1\right)+P\left(B_2\right)+P\left(B_3\right)=\dfrac{48}{91}\)

 

22 tháng 8 2023

latex hoc24 lỗi ạ

AH
Akai Haruma
Giáo viên
7 tháng 3 2023

Lời giải:

a. $A=\left\{1;2;4;7;11\right\}$

b. 

Rút ngẫu nhiên 1 thẻ từ hộp, có 5 khả năng (1,2,4,7,11)

Rút được thẻ ghi số chẵn, tức là rút phải thẻ $2,4$ (2 khả năng)

Rút được thẻ ghi số nguyên tố, tức là rút phải thẻ $2,7,11$ (3 khả năng)

Xác suất để biến cố M xảy ra: $\frac{2}{5}$

Xác suất để biến cố N xảy ra: $\frac{3}{5}$

7 tháng 3 2023

a) A = {1; 2; 4; 7; 11}

b) Xác suất của biến cố M:

2 : 5 . 100% = 40%

Xác suất của biến cố N:

3 : 5 . 100% = 60%

HQ
Hà Quang Minh
Giáo viên
15 tháng 9 2023

Đáp án đúng là C

Số lần lấy được thẻ màu đỏ là \(50 - 14 = 36\) (lần)

Xác suất thực nghiệm của biến cố “Lấy được thẻ màu đỏ” là \(\frac{{36}}{{50}} = 0,72\)

Chọn B

22 tháng 9 2023

tham khảo

A là biến cố "Hai quả bóng lấy ra đều có màu xanh", \(P\left(A\right)=\dfrac{C^2_5}{C^2_9}\)

B là biến cố "Hai quả bóng lấy ra đều có màu đỏ", \(P\left(B\right)=\dfrac{C^2_4}{C^2_9}\)

\(A\cup B\)  là biến cố "Hai bóng lấy ra có cùng màu". A và B xung khắc nên:

\(P\left(A\cup B\right)=P\left(A\right)+P\left(B\right)=\dfrac{4}{9}\)

\(\Rightarrow C\)