Tìm x biết x là stn
(1/1*51+1/2*52+1/3*53+...+1/10*60)*x=1/1*11+1*2*12+1/3*13+...+1/50*60)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(1 + \(\dfrac{1}{49}\))\(\times\)(1 + \(\dfrac{1}{50}\))\(\times\)(1 + \(\dfrac{1}{51}\))\(\times\)(1 + \(\dfrac{1}{52}\))\(\times\)...\(\times\)(1 + \(\dfrac{1}{60}\))
= \(\dfrac{49+1}{49}\) \(\times\) \(\dfrac{50+1}{50}\)\(\times\) \(\dfrac{51+1}{51}\)\(\times\)\(\dfrac{52+1}{52}\)\(\times\)...\(\times\)\(\dfrac{61}{60}\)
= \(\dfrac{50}{49}\)\(\times\)\(\dfrac{51}{50}\)\(\times\)\(\dfrac{52}{51}\)\(\times\)...\(\times\)\(\dfrac{61}{60}\)
= \(\dfrac{50\times51\times52\times53\times...\times60}{50\times51\times52\times53\times...\times60}\)\(\times\)\(\dfrac{61}{49}\)
= \(\dfrac{61}{49}\)
a) \(\dfrac{2}{3}x-\dfrac{1}{2}=\dfrac{1}{10}\)
\(\dfrac{2}{3}x=\dfrac{1}{10}+\dfrac{1}{2}=\dfrac{3}{5}\)
\(x=\dfrac{3}{5}:\dfrac{2}{3}=\dfrac{9}{10}\)
b) \(\dfrac{39}{7}:x=13\)
\(x=\dfrac{\dfrac{39}{7}}{13}=\dfrac{3}{7}\)
c) \(\left(\dfrac{14}{5}x-50\right):\dfrac{2}{3}=51\)
\(\dfrac{14}{5}x-50=51\cdot\dfrac{2}{3}=34\)
\(\dfrac{14}{5}x=34+50=84\)
\(x=\dfrac{84}{\dfrac{14}{5}}=30\)
d) \(\left(x+\dfrac{1}{2}\right)\left(\dfrac{2}{3}-2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=0\\\dfrac{2}{3}-2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=\dfrac{1}{3}\end{matrix}\right.\)
e) \(\dfrac{2}{3}x-\dfrac{1}{2}x=\dfrac{5}{12}\)
\(\dfrac{1}{6}x=\dfrac{5}{12}\)
\(x=\dfrac{5}{12}:\dfrac{1}{6}=\dfrac{5}{2}\)
g) \(\left(x\cdot\dfrac{44}{7}+\dfrac{3}{7}\right)\dfrac{11}{5}-\dfrac{3}{7}=-2\)
\(\left(x\cdot\dfrac{44}{7}+\dfrac{3}{7}\right)\cdot\dfrac{11}{5}=-2+\dfrac{3}{7}=-\dfrac{11}{7}\)
\(x\cdot\dfrac{44}{7}+\dfrac{3}{7}=-\dfrac{11}{7}:\dfrac{11}{5}=-\dfrac{5}{7}\)
\(\dfrac{44}{7}x=-\dfrac{5}{7}-\dfrac{3}{7}=-\dfrac{8}{7}\)
\(x=-\dfrac{8}{7}:\dfrac{44}{7}=-\dfrac{2}{11}\)
h) \(\dfrac{13}{4}x+\left(-\dfrac{7}{6}\right)x-\dfrac{5}{3}=\dfrac{5}{12}\)
\(\dfrac{25}{12}x-\dfrac{5}{3}=\dfrac{5}{12}\)
\(\dfrac{25}{12}x=\dfrac{5}{12}+\dfrac{5}{3}=\dfrac{25}{12}\)
\(x=1\)
Mỏi tay woa bn làm nốt nha!!
a) 50 + 48 + 46 + ... + 4 - 47 - 45 - 43 - ... - 1
= (50 - 45) + (48 - 43) + (46 - 41) + ... + (6 - 1) + (4 - 47)
=72
Cứ gộp nhóm làm sao cho trong ngoặc đó bằng 5
b) 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + 9 + 10 - 11 - 12 + ... + 50 - 51 - 52 + 53 + 54
= (1 + 54) + (2 + 53) - (3 + 52) - (4 + 51) + ... + (25 + 30) + (26 + 29) - (27 + 28)
=55
Cứ gộp nhóm làm sao cho trong ngoặc đó bằng 55. Còn dấu đằng trước nhóm thì theo dấu đề bài cho
~ Học tốt ~
Bài 1:
Ta có: \(4-2\left(x+1\right)=2\)
\(\Leftrightarrow2\left(x+1\right)=2\)
\(\Leftrightarrow x+1=1\)
hay x=0
Bài 2:
Ta có: \(\left|2x-3\right|-1=2\)
\(\Leftrightarrow\left|2x-3\right|=3\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=3\\2x-3=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=6\\2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=0\end{matrix}\right.\)
Bài 1:
a; (\(\dfrac{1}{4}\)\(x\) - \(\dfrac{1}{8}\)) x \(\dfrac{3}{4}\) = \(\dfrac{1}{4}\)
\(\dfrac{1}{4}x\) - \(\dfrac{1}{8}\) = \(\dfrac{1}{4}\) : \(\dfrac{3}{4}\)
\(\dfrac{1}{4}\)\(x\) - \(\dfrac{1}{8}\) = \(\dfrac{1}{4}\) x \(\dfrac{4}{3}\)
\(\dfrac{1}{4}x\) - \(\dfrac{1}{8}\) = \(\dfrac{1}{3}\)
\(\dfrac{1}{4}x\) = \(\dfrac{1}{3}\) + \(\dfrac{1}{8}\)
\(\dfrac{1}{4}\) \(x\)= \(\dfrac{8}{24}\) + \(\dfrac{11}{24}\)
\(\dfrac{1}{4}x=\dfrac{11}{24}\)
\(x=\dfrac{11}{24}:\dfrac{1}{4}\)
\(x=\dfrac{11}{24}\times4\)
\(x=\dfrac{11}{6}\)
b; \(\dfrac{12}{5}:x\) = \(\dfrac{14}{3}\) x \(\dfrac{4}{7}\)
\(\dfrac{12}{5}\) : \(x\) = \(\dfrac{8}{3}\)
\(x\) = \(\dfrac{12}{5}\) : \(\dfrac{8}{3}\)
\(x\) = \(\dfrac{12}{5}\) x \(\dfrac{3}{8}\)
\(x\) = \(\dfrac{9}{10}\)
Đặt \(M=\dfrac{1}{1\cdot51}+\dfrac{1}{2\cdot52}+...+\dfrac{1}{10\cdot60}\)
=>\(50M=\dfrac{50}{1\cdot51}+\dfrac{50}{2\cdot52}+...+\dfrac{50}{10\cdot60}\)
\(\Leftrightarrow50M=\left(1+\dfrac{1}{2}+...+\dfrac{1}{10}\right)-\left(\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{60}\right)\)
\(N=\dfrac{1}{1\cdot11}+\dfrac{1}{2\cdot12}+...+\dfrac{1}{50\cdot60}\)
=>\(10N=\dfrac{10}{1\cdot11}+\dfrac{10}{2\cdot12}+...+\dfrac{10}{50\cdot60}\)
=>\(10N=\left(1+\dfrac{1}{2}+...+\dfrac{1}{50}\right)-\left(\dfrac{1}{11}+\dfrac{1}{12}+...+\dfrac{1}{60}\right)\)
=>\(10N=\left(1+\dfrac{1}{2}+...+\dfrac{1}{10}\right)-\left(\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{60}\right)\)
=>50M=10N
=>\(\dfrac{M}{N}=\dfrac{10}{50}=\dfrac{1}{5}\)
=>N=5M
\(\left(\dfrac{1}{1\cdot51}+\dfrac{1}{2\cdot52}+...+\dfrac{1}{10\cdot60}\right)\cdot x=\dfrac{1}{1\cdot11}+\dfrac{1}{2\cdot12}+...+\dfrac{1}{50\cdot60}\)
=>\(M\cdot x=N\)
=>x=N/M=5