K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(x^2-\left(2m+1\right)x+m^2+1=0\)

\(\text{Δ}=\left(2m+1\right)^2-4\cdot1\cdot\left(m^2+1\right)\)

\(=4m^2+4m+1-4m^2-4=4m-3\)

Để phương trình có hai nghiệm phân biệt thì Δ>0

=>4m-3>0

=>4m>3

=>\(m>\dfrac{3}{4}\)

Theo Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2m+1\\x_1x_2=\dfrac{c}{a}=m^2+1\end{matrix}\right.\)

\(A=\left(2x_1-x_2\right)\left(x_1-2x_2\right)\)

\(=2x_1^2+2x_2^2-5x_1x_2\)

\(=2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]-5x_1x_2\)

\(=2\left[\left(2m+1\right)^2-2\left(m^2+1\right)\right]-5\left(m^2+1\right)\)

\(=2\left(2m+1\right)^2-9\left(m^2+1\right)\)

\(=2\left(4m^2+4m+1\right)-9m^2-9\)

\(=8m^2+8m+2-9m^2-9\)

\(=-m^2+8m-7\)

\(=-\left(m^2-8m+7\right)\)

\(=-\left(m^2-8m+16-9\right)\)

\(=-\left(m-4\right)^2+9< =9\forall m\)

Dấu '=' xảy ra khi m=4

23 tháng 10 2019

a. + Với  m = − 1 2   phương trình (1) trở thành x 2 − 4 x = 0 ⇔ x = 0 x = 4 .

+ Vậy khi  m = − 1 2  phương trình có hai nghiệm x= 0 và x= 4.

b. + Phương trình có hai nghiệm dương phân biệt khi 

                            Δ = 2 m + 5 2 − 4 2 m + 1 > 0 x 1 + x 2 = 2 m + 5 > 0 x 1 . x 2 = 2 m + 1 > 0

+ Ta có  Δ = 2 m + 5 2 − 4 2 m + 1 = 4 m 2 + 12 m + 21 = 2 m + 3 2 + 12 > 0 , ∀ m ∈ R

+ Giải được điều kiện  m > − 1 2  (*).

+ Do P>0 nên P đạt nhỏ nhất khi P 2  nhỏ nhất.

+ Ta có P 2 = x 1 + x 2 − 2 x 1 x 2 = 2 m + 5 − 2 2 m + 1 = 2 m + 1 − 1 2 + 3 ≥ 3     ( ∀ m > − 1 2 ) ⇒ P ≥ 3    ( ∀ m > − 1 2 ) .

và P = 3  khi m= 0 (thoả mãn (*)).

+ Vậy giá trị nhỏ nhất  P = 3  khi m= 0.

a: Δ=(2m-1)^2-4*(-1)(m-m^2)

=4m^2-4m+1+4m-4m^2=1>0

=>(1) luôn có hai nghiệm phân biệt

b: m=x1-2x1x2+x2-2x1x2

=x1+x2-4x1x2

=2m-1+4(m-m^2)

=>m-2m+1-4m+4m^2=0

=>4m^2-5m+1=0

=>m=1 hoặc m=1/4

c: x1+x2-2x1x2

=2m-1+2m-2m^2=-2m^2+4m-1

=-2m^2+4m-2+1

=-2(m-1)^2+1<=1

21 tháng 10 2019

Phương trình  2 x 2 - 4 m x - 1 = 0  có  ∆ ' = 4 m 2 + 2 > 0  nên phương trình có hai nghiệm phân biệt  x 1 ,   x 2  với S = x 1 + x 2 = 2 m ,  P = x 1 x 2 = - 1 2

Ta có:  T 2 = x 1 - x 2 2 = S 2 - 4 P = 4 m 2 + 2 ≥ 2 ⇒ T ≥ 2

Dấu bằng xảy ra khi m = 0.

Vậy  m i n T = 2

Đáp án cần chọn là: B

5 tháng 3 2017

Đáp án: C

27 tháng 4 2023

loading...  

27 tháng 4 2022

Tham khảo:

undefined

 

12 tháng 7 2018

Đáp án B

25 tháng 12 2017

Chọn đáp án C

Phương pháp

+) Đặt điều kiện để phương trình có nghĩa.

+) Đặt ẩn phụ để giải phương trình: log 2 x = t . Tìm điều kiện để phương trình có nghiệm.

+) Dựa vào dữ kiện  x 1 + x 2 = 6  tìm m. Từ đó tính  x 1 - x 2 .

Phương trình đã cho có hai nghiệm phân biệt: x 1 , x 2 ⇔ phương trình (*) có hai nghiệm phân biệt ⇔ m ≠ 2 .

Δ=(-2)^2-4(m-1)

=-4m+4+4

=-4m+8

Để phương trình có hai nghiệm phân biệt thì -4m+8>0

=>-4m>-8

=>m<2

x1^2+x2^2-3x1x2=2m^2+|m-3|

=>2m^2+|m-3|=(x1+x2)^2-5x1x2=2^2-5(m-1)=4-5m+5=-5m+9

TH1: m>=3

=>2m^2+m-3+5m-9=0

=>2m^2+6m-12=0

=>m^2+3m-6=0

=>\(m\in\varnothing\)

TH2: m<3

=>2m^2+3-m+5m-9=0

=>2m^2+4m-6=0

=>m^2+2m-3=0

=>(m+3)(m-1)=0

=>m=1 hoặc m=-3