K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4

4 năm nữa em trả lời nghen

 

giúp ik :(((

 

#\(N\)

`a,` Xét Tam giác `AMB` và Tam giác `CME` có:

`AM = ME (g``t)`

\(\widehat{AMB}=\widehat{CME}\) `(2` góc đối đỉnh `)`

`MB = MC (g``t)`

`=>` Tam giác `AMB =` Tam giác `CME (c-g-c)`

`b,` Vì Tam giác `AMB =` Tam giác `CME (a)`

`-> AB = CE (2` cạnh tương ứng `)`

Xét Tam giác `ABH` và Tam giác `DBH` có:

`HA = HD (g``t)`

\(\widehat{BHA}=\widehat{BHD}=90^0\) 

`BH` chung

`=>` Tam giác `ABH =` Tam giác `DBH (c-g-c)`

`=> AB = BD (2` cạnh tương ứng `)`

Mà `AB = CE -> BD = CE`

`c,` Xét Tam giác `AMH` và Tam giác `DMH` có:

`HA = HD (g``t)`

\(\widehat{AHM}=\widehat{DHM}=90^0\)  

`HM` chung

`=>` Tam giác `AMH =` Tam giác `DMH (c-g-c)`

`=> AM = DM (2` cạnh tương ứng `)`

Xét Tam giác `AMD` có: `AM = DM`

`->` Tam giác `AMD` là tam giác cân.

 

loading...

Mình bổ sung thêm hình ạ ._. nãy k sửa kịp á.

A B D H C

a) Xét \(\Delta AHB\)và \(\Delta DHB\)có:

\(AH=DH\left(gt\right)\)

BH là cạnh chung

\(\widehat{AHB}=\widehat{DHB}\left(=90^0\right)\)

\(\Rightarrow\Delta ABH=\Delta DBH\left(c.g.c\right)\)

b) Vì \(\Delta ABH=\Delta DBH\left(cmt\right)\)

\(\Rightarrow\widehat{ABH}=\widehat{DBH}\)( 2 góc tương ứng )

=> BC là tia phân giác \(\widehat{ABD}\)( đpcm )

21 tháng 3 2020

A)Xét t/giác AHB và t/giác DHB có

    AH=AD(gt)

  Góc AHB=góc DHB=900

  BH là cạnh chung

Suy ra t/giác AHB=t/giác DHB(c-g-c)

B)Ta có Góc ABH=góc DBH( t/giác ABH=t/giác DBH)

Suy ra :BC là tia phân giác của góc ABD

C)Xét t/giác AHM vuông tại H và t/giác FNM vuông tại N 

  AM=FM(gt)

  Góc AHM= góc FMN(2 góc đối đỉnh)

Suy ra t/giác AHM =t/giác FNM( cạnh huyền -góc nhọn)

Suy ra AH=NF (2 cạnh tương ứng)

Mà AH=HD (gt)

Suy ra NF=HD

Chúc bn hc tốt

29 tháng 5 2021

a,xét tam giác ACH và tam giác DCH có:

HA=HD(gt)

góc CHA= góc CHD(vì CH\(\perp\)AD)

HC chung => tam giác ACH=tam giác DCH(c.g.c)

tam giác ADC có CH vừa là trung tuyến đồng thời là đường cao=>tam giác ADC cân tại C

b,xét tam giác AHB và tam giác DHE có:

góc BHA= góc DHE( đối đỉnh)

HA=HD(cmt), HB=HE(gT)=>tam giác AHB= tam giác DHE(c.g.c)

gọi giao điểm DE với AC là K

vì tam giác AHB= tam giác DHE(cmt)=>góc HED= góc HBA

mà góc HED=góc CEK( đối đỉnh)=> góc HBA=góc CEK

lại có tam giác ABC vuông tại A=> góc HBA+ góc ECK=90 độ=> góc CEK+góc ECK=90 độ=>DK\(\perp AC\)

hay DE \(\perp AC\) mà CE\(\perp AD\)(tại H)=>E là trực tâm tam giác ADC

ăn cơm đã ý c tí mik làm sau

29 tháng 5 2021

help mình

a: góc B=90-30=60 độ

góc B>góc C

=>AC>AB

góc CAH=90-30=60 độ>góc C

=>CH>AH

b: Xét ΔAHC vuông tại H và ΔDHC vuông tại H có

CH chung

HA=HD

=>ΔCAH=ΔCDH

c: Xét ΔACB và ΔDCB có

CA=CD

góc ACB=góc DCB

CB chung

=>ΔACB=ΔDCB

=>góc CDB=góc CAB=90 độ

a: ΔABC vuông tại A

b: góc B=2/3*90=60 độ

góc C=90-60=30 độ

Xét ΔABD có

AH vừa là đường cao, vừa là trung tuyến

góc B=60 độ

=>ΔABD đều

=>góc DAB=60 độ

=>góc DAC=góc DCA

=>DA=DC

Xét ΔDHA vuông tại H và ΔDEC vuông tại E có

DA=DC

góc ADH=góc CDE

=>ΔDHA=ΔDEC

=>DH=DE

 

12 tháng 5 2023

a) Xét ΔABE vuông tại E & ΔNBE vuông tại E có:

- BE là cạnh chung, BN = BA (giả thuyết)

Suy ra ΔABE = ΔNBE (cạnh huyền - cạnh góc vuông)

b) Theo đề ta có BH vuông góc với AD và HA = HD

Suy ra BH là đường trung trực của AD

Suy ra BA = BD (vì B nằm trên đường trung trực của AD)

c) Trong ΔNAB có AH và BE là đường cao, đồng quy tại điểm K

Suy ra NK là đường cao của ΔNAB, hay NK vuông góc với AB

Mà AC cũng vuông góc với AB, suy ra NK // CA

13 tháng 5 2023

a. - Vì BE vuông góc với AN (gt)
=> tam giác ABE vuông tại E (tc)
     tam giác NBE vuông tại E (tc)
- Xét tam giác vuông ABE và tam giác vuông NBE, có:
    + Chung BE
    + BA = BN (gt)
=> tam giác vuông ABE = tam giác vuông NBE (Cạnh huyền - cạnh  góc vuông)

b. - Vì AH là đường cao của tam giác ABC (gt)
=> tam giác ABH vuông tại H
     tam giác DBH vuông tại H
- Xét tam giác vuông ABH và tam giác vuông DBH, có:
    + Chung BH
    + HA = HD (gt)
=> tam giác vuông ABH = tam giác vuông DBH (2 cạnh góc vuông)
    => BA = BD (2 cạnh tương ứng)

16 tháng 12 2016


A B C D E H M

16 tháng 12 2016

Làm tiếp nha:

Xét tứ giác ABEC có 2 đường chéo AE và BC cắt nhau tại trung điểm M của mỗi đường nên ABEC là hình bình hành.

=> \(\hept{\begin{cases}AB=CE\left(1\right)\\ABllCE\end{cases}}\)

a ) xét \(\Delta ABM\)và \(\Delta ECM\)có:

\(\hept{\begin{cases}MA=ME\left(gt\right)\\MB=MC\left(gt\right)\\AB=CE\left(cmt\right)\end{cases}}\)

---> \(\Delta ABM=\Delta ECM\left(c.c.c\right)\)

b) Xét \(\Delta ABD\) có BH là đường cao đồng thời đường trung tuyến nên \(\Delta ABD\) cân tại B.

---> BC là phân giác của ABD

\(\Delta ABD\)cân tại B ---> AB = BD (2)

Từ (1),(2) ---> BD = CE

23 tháng 4 2019

a, xét 2 t.giác vuông ABH và MBH có:

             AH=MH(gt)

            HB cạnh chung

=> t.giác ABH=t.giác MBH(cạnh góc vuông-cạnh góc vuông)

b, vì I là trung điểm của BC nên AI=1/2 BC<=> AI=IC

=>t.giác AIC cân tại I

xét 2 t.giác vuông ABC và CDA có:

       AC cạnh chung

      \(\widehat{ACB}\)=\(\widehat{CAD}\)(t.giác AIC cân tại I)

=>t.giác ABC=t.giác CDA(cạnh góc vuông-góc nhọn)

=> CD=AB(2 cạnh tương ứng)

c,dễ nên tự làm

25 tháng 2 2020

a, xét 2 t.giác vuông ABH và MBH có:
             AH=MH(gt)
            HB cạnh chung
=> t.giác ABH=t.giác MBH(cạnh góc vuông-cạnh góc vuông)
b, vì I là trung điểm của BC nên AI=1/2 BC<=> AI=IC
=>t.giác AIC cân tại I
xét 2 t.giác vuông ABC và CDA có:
       AC cạnh chung
   góc ACB    = góc CAD (t.giác AIC cân tại I)
=>t.giác ABC=t.giác CDA(cạnh góc vuông-góc nhọn)
=> CD=AB(2 cạnh tương ứng)

c) Ta có \(\hept{\begin{cases}\widehat{ACB+\widehat{ABC=90}độ}\\HBM+HMB=90\end{cases}}\)(do tam giác ABC zuông tại a , do tam giác BHM zuông tại H

mà ABH=HBM do ( Tam giác AHB=tam giác HBM cmt)

=> ACB=HMB hay ACB =AMB