a) Thu gọn và sắp xếp các hạng tử của đa thức sau theo lũy
thừa giảm của biến:
𝑀(x) = 2𝑥3 − 𝑥2 + 8𝑥 − 1 − 3𝑥2
𝑁(x) = −4𝑥2 + 2x2 + 3 + 5 + 7x
b) Tính tổng của hai đa thức M(x) và N(x).
c) Thực hiện phép nhân 3𝑥2 .(5𝑥2 − x + 2).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(M\left(x\right)=-2x^5+5x^2+7x^4-5x+8+2x^5-7x^4-4x^2+6\)
\(=\left(-2x^5+2x^5\right)+\left(7x^4-7x^4\right)+\left(5x^2-4x^2\right)-9x+\left(8+6\right)\)
\(=x^2-9x+14\)
\(N\left(x\right)=7x^7+x^6-5x^3+2x^2-7x^7+5x^3+3\)
\(=\left(7x^7-7x^7\right)+x^6-\left(5x^3-5x^3\right)+2x^2+3\)
\(=x^6+2x^2+3\)
b) Đa thức M(x) có hệ số cao nhất là 1
hệ số tự do là 14
bậc 2
Đa thức N(x) có hệ số cao nhất là 1
hệ số tự do là 3
bậc 6
a, \(P\left(x\right)=5x^2-3x+7\)
\(Q\left(x\right)=-5x^3-x^2+4x-5\)
b, Thay x = 1 vào Q(x) ta được
-5 - 1 + 4 - 5 = -7
c, \(Q\left(x\right)+P\left(x\right)=-5x^3+4x^2+x+2\)
\(Q\left(x\right)-P\left(x\right)=-5x^3-6x^2+7x-12\)
\(-5x^3+9x^2+x=0\Leftrightarrow x\left(-5x^2+9x+1\right)=0\Leftrightarrow x=0;x=\dfrac{9\pm\sqrt{101}}{10}\)
Thu gọn
A(x) = 5 +3x2 – x - 2x2
A(x) = 5+x2-x
A(x) = x2-x+5
B(x) = 3x + 3 – x – x2
B(x) = ( 3x-x) + 3 - x2
B(x) = 2x+3-x2
B(x)= -x2 + 2x+3
\(a)A\left(x\right)=5+3x^2-x-2x^2\)
\(A\left(x\right)=\left(3x^2-2x^2\right)-x+5\)
\(A\left(x\right)=x^2-x+5\)
\(B\left(x\right)=3x+3-x-x^2\)
\(B\left(x\right)=-x^2+\left(3x-x\right)+3\)
\(B\left(x\right)=-x^2+2x+3\)
\(b)C\left(x\right)=A\left(x\right)+B\left(x\right)\)
\(C\left(x\right)=\left(x^2-x+5\right)+\left(-x^2+2x+3\right)\)
\(C\left(x\right)=x^2-x+5+-x^2+2x+3\)
\(C\left(x\right)=\left(x^2-x^2\right)+\left(-x+2x\right)+\left(5+3\right)\)
\(C\left(x\right)=-x+8\)
\(c)D\left(x\right)=A\left(x\right)-B\left(x\right)\)
\(D\left(x\right)=\left(x^2-x+5\right)-\left(-x^2+2x+3\right)\)
\(D\left(x\right)=x^2-x+5+x^2-2x-3\)
\(D\left(x\right)=\left(x^2+x^2\right)+\left(-x-2x\right)+\left(5-3\right)\)
\(D\left(x\right)=2x^2-3x+2\)
a) \(A\left(x\right)=5+3x^2-x-2x^2\)
\(A\left(x\right)=5+\left(3x^2-2x^2\right)-x\)
\(A\left(x\right)=5+x^2-x\)
\(A\left(x\right)=x^2-x+5\)
\(B\left(x\right)=3x+3-x-x^2\)
\(B\left(x\right)=\left(3x-x\right)+3-x^2\)
\(B\left(x\right)=2x+3-x^2\)
\(B\left(x\right)=-x^2+2x+3\)
b) Ta có \(C\left(x\right)=A\left(x\right)+B\left(x\right)\)
\(\begin{matrix}\Rightarrow A\left(x\right)=x^2-x+5\\^+B\left(x\right)=-x^2+2x+3\\\overline{A\left(x\right)+B\left(x\right)=0+x+8}\end{matrix}\)
Vậy \(C\left(x\right)=x+8\)
c) Ta có \(D\left(x\right)=A\left(x\right)-B\left(x\right)\)
\(\begin{matrix}\Rightarrow A\left(x\right)=x^2-x+5\\^-B\left(x\right)=-x^2+2x+3\\\overline{A\left(x\right)-B\left(x\right)=2x^2-3x+2}\end{matrix}\)
Vậy \(D\left(x\right)=2x^2-3x+2\)
Ở câu b, \(A\left(x\right)+B\left(x\right)=0+x+8\) số 0 bạn bỏ rồi để khoảng trống \(A\left(x\right)+B\left(x\right)=\) \(x+8\) như vậy nha, với các dấu \(=\) ở câu b và c với cái số bạn đặt thẳng hàng nha (các từ in đậm bạn không cần ghi)
a) P(x) = 5x5 - 4x2 + 7x + 15
Q(x) = 5x5 - 4x2 + 3x + 8
b) Có: P(x) - Q(x) = 4x + 7
P(x) - Q(x) = 0 <=> x = \(-\dfrac{-7}{4}\)
`a,```P(x) = 8x^5 +7x -6x^2 -3x^5 +2x^2+15`
`= (8x^5 -3x^5 ) +(-6x^2+2x^2) +7x+15`
`=5x^5 -4x^2 +7x+15`
`Q(x) =4x^5 +3x-2x^2 +x^5 -2x^2+8`
`=(4x^5+x^5) +(-2x^2 -2x^2)+3x+8`
`= 5x^5 - 4x^2 +3x+8`
`b, P(x) -Q(x)=(5x^5 -4x^2 +7x+15)-(5x^5 - 4x^2 +3x+8)`
`= 5x^5 -4x^2 +7x+15-5x^5 +4x^2 -3x-8`
`= (5x^5-5x^5)+(-4x^2+4x^2) +(7x-3x)+(15-8)`
`= 0 + 0 +4x + 7`
`=4x+7`
a: \(M\left(x\right)=2x^3-x^2+8x-1-3x^2\)
\(=2x^3+\left(-x^2-3x^2\right)+8x-1\)
\(=2x^3-4x^2+8x-1\)
\(N\left(x\right)=-4x^2+2x^2+3+5+7x\)
\(=\left(-4x^2+2x^2\right)+7x+8\)
\(=-2x^2+7x+8\)
b: M(x)+N(x)
\(=2x^3-4x^2+8x-1-2x^2+7x+8\)
\(=2x^3-6x^2+15x+7\)
c: \(3x^2\left(5x^2-x+2\right)\)
\(=3x^2\cdot5x^2-3x^2\cdot x+3x^2\cdot2\)
\(=15x^4-3x^3+6x^2\)