cho tam giác abc vuông tại a gọi i là trg điểm của cạnh bc sao cho bi=ba và h là trg điềm của ai tia bh cắt ae tại e tia ia cắt ba tai m
chứng minh rằng tam giác abh = tam giác ibh
chứng minh tam giác aei cân
chứng minh em>ei
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ΔBAD cân tại B
mà BH là trung tuyến
nên BH vuông góc AD
Xet ΔEAD có
EH vừa là đường cao, vừa là trung tuyến
=>ΔEAD cân tại E
b: EA=ED
mà EA<EM
nên ED<EM
a: ΔBAD cân tại B
mà BH là trung tuyến
nên BH là phân giác của góc ABD
Xét ΔBAE và ΔBDE có
BA=BD
góc ABE=góc DBE
BE chung
=>ΔBAE=ΔBDE
=>EA=ED
b: EA=ED
mà EA<EM
nên ED<EM
a: ΔBAD cân tại B
mà BH là trung tuyến
nên BH là phân giác của góc ABD
Xét ΔBAE và ΔBDE có
BA=BD
góc ABE=góc DBE
BE chung
=>ΔBAE=ΔBDE
=>EA=ED
b: EA=ED
mà EA<EM
nên ED<EM
a: Xét ΔBAI và ΔBDI có
BA=BD
AI=DI
BI chung
=>ΔBAI=ΔBDI
b:
ΔBAI=ΔBDI
=>góc ABI=góc DBI
=>góc ABE=góc DBE
Xét ΔBAE và ΔBDE có
BE chung
góc ABE=góc DBE
BA=BD
Do đó; ΔBAE=ΔBDE
=>EA=ED và góc BDE=góc BAE
=>ΔEAD cân tại E và góc BDE=90 độ
c: EA=ED
EA<EF
Do đó: ED<EF
a: Ta có: ΔBAG cân tại B
mà BI là đường trung tuyến
nên BI là đường phân giác
có làm thì ms có ăn ⇒tự đuy mà vẽ hình
mà thui nhường mk đuy
Ta có : Tam giác ABM cân tại B
=>MAB^=AMB^ (1)
Lại có : IMB^=IAB^=90* (2)
Từ 1 và 2 : +)IAM^=90*-MAB^
+)IMA^ =90*-AMB^
=>IAM^=IMA^
=>Tam giác IAM cân tại I
=>IA=iM
''∠'' là góc nhé.
a) Vì ∆ABC vuông tại A (GT)
=> ∠BAC = 90o (ĐN) (1)
Vì IM ⊥ BC (GT)
=> ∠IMB = 90o
Mà ∠BAC = 90o (Theo (1))
(Ngoặc ''}'' 2 điều trên)
=> ∠BAC = ∠IMB = 90o
Hay ∠BAI = ∠IMB = 90o (2)
Xét ∆ABI và ∆MBI có :
∠BAI = ∠IMB = 90o (Theo (2))
BI chung
BA = BM (Gt)
=> ∆ABI = ∆MBI (cạnh huyền - cạnh góc vuông)
=> AI = IM (2 cạnh tương ứng) (3)
b) Ta có : ∠BAC + ∠NAC = 180o (2 góc kề bù)
Mà ∠BAC = 90o (Theo (1))
=> 90o + ∠NAC = 180o
=> ∠NAC = 180o - 90o = 90o
Vì IM ⊥ BC (GT) => ∠IMC = 90o (ĐN)
(Ngoặc ''}'' 2 điều trên)
=> ∠NAC = ∠IMC = 90o
Hay ∠NAI = ∠IMC = 90o (4)
Lại có : ∠I1 = ∠I2 (2 góc đối đỉnh) (5)
Xét ∆ANI và ∆MCI có :
∠NAI = ∠IMC = 90o (Theo (4))
AI = MI (Theo (3))
∠I1 = ∠I2 (Theo (5))
=> ∆ANI = ∆MCI (g.c.g)
=> AN = MC (2 cạnh tương ứng)
Mà AN + BA = BN
MC + BM = BC
BA = BM (GT)
(Ngoặc ''}'' 4 điều trên)
=> BN = BC
=> ∆NBC cân tại B (ĐN)
P/s : Xin lỗi, mình chỉ làm được đến đây thôi, nghỉ nhiều quá nên mình ngu hẳn, có gì mình nghiên cứu lại sau :(.
a: Xét ΔBAH và ΔBIH có
BA=BI
AH=IH
BH chung
Do đó: ΔBAH=ΔBIH
b: Ta có: ΔBAH=ΔBIH
=>\(\widehat{ABE}=\widehat{IBE}\)
Xét ΔBAE và ΔBIE có
BA=BI
\(\widehat{ABE}=\widehat{IBE}\)
BE chung
Do đó: ΔBAE=ΔBIE
=>EA=EI
c: Ta có: ΔBAE=ΔBIE
=>\(\widehat{BAE}=\widehat{BIE}\)
=>\(\widehat{BIE}=90^0\)
=>EI\(\perp\)BC tại I
ta có: EA=EI
mà EA<EM(ΔEAM vuông tại A)
nên EM>EI