K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2017

câu1) 

ta có ĐK...

xét x=0 là nghiệm, 

xét x>0 thì vế trái  <2

xét x<0 thì vế trái >2 

vậy x=0

26 tháng 9 2017

câu cuối đc sử dụng máy tính ko

Thực ra mình lập câu hỏi này để giải một bài toán mình từng hỏi cho mọi người tham khảo, thì có một bạn nhờ mình giải.Link : http://olm.vn/hoi-dap/question/715065.htmlThấy Online Math chọn thì không nỡ bỏ quên :vĐề :  Chia số \(2013^{2016}\) thành tổng các số tự nhiên.Tìm số dư của tổng lập phương các số tự nhiên đó cho 6.Bài này chủ yếu là đánh lừa các bạn, vì không rõ ràng ở phần "...
Đọc tiếp

Thực ra mình lập câu hỏi này để giải một bài toán mình từng hỏi cho mọi người tham khảo, thì có một bạn nhờ mình giải.

Link : http://olm.vn/hoi-dap/question/715065.html

Thấy Online Math chọn thì không nỡ bỏ quên :v

Đề :  Chia số \(2013^{2016}\) thành tổng các số tự nhiên.

Tìm số dư của tổng lập phương các số tự nhiên đó cho 6.

Bài này chủ yếu là đánh lừa các bạn, vì không rõ ràng ở phần " tổng các số tự nhiên", chúng ta chẳng biết tổng của các số nào cả, có rất nhiều cách chia như vậy. Với những bài có dạng như này, mẹo là các bạn đưa về dạng tổng quá, sẽ dễ dàng chứng minh được.

Cách giải :

Đặt \(2013^{2016}=a_1+a_2+...+a_n\)

Tổng lập phương các số tự nhiên này là :

\(a_1^3+a_2^3+...+a_n^3\)

Có :

\(a_1^3+a_2^3+...+a_n^3-\left(a_1+a_2+...+a_n\right)\)

\(=\left(a_1^3-a_1\right)+\left(a_2^3-a_2\right)+...+\left(a_n^3-a_n\right)\)

\(=a_1\left(a_1^2-1\right)+a_2\left(a_2^2-1\right)+...+a_n\left(a_n^2-1\right)\)

\(=\left(a_1-1\right)a\left(a_1+1\right)+\left(a_2-1\right)a_2\left(a_2+1\right)+...+\left(a_n-1\right)a_n\left(a_n+1\right)\)

Thấy \(\left(a_1-1\right)a\left(a_1+1\right);\left(a_2-1\right)a_2\left(a_2+1\right);...;\left(a_n-1\right)a_n\left(a_n+1\right)\) là tích 3 số tự nhiên liên tiếp nên dễ dàng chứng minh nó chia hết cho 6.

Do đó \(a_1^3+a_2^3+...+a_n^3-\left(a_1+a_2+...+a_n\right)\) chia hết cho 6, tức \(a_1^3+a_2^3+...+a_n^3\) có cùng số dư với \(2013^{2016}\left(=a_1+a_2+...+a_n\right)\) khi chia cho 6.

Các bạn tự tìm số dư, vì phần còn lại khá đơn giản :)

0
Thực ra mình lập câu hỏi này để giải một bài toán mình từng hỏi cho mọi người tham khảo, thì có một bạn nhờ mình giải.Link : http://olm.vn/hoi-dap/question/715065.htmlThấy Online Math chọn thì không nỡ bỏ quên :vĐề :  Chia số \(2013^{2016}\) thành tổng các số tự nhiên.Tìm số dư của tổng lập phương các số tự nhiên đó cho 6.Bài này chủ yếu là đánh lừa các bạn, vì không rõ ràng ở phần "...
Đọc tiếp

Thực ra mình lập câu hỏi này để giải một bài toán mình từng hỏi cho mọi người tham khảo, thì có một bạn nhờ mình giải.

Link : http://olm.vn/hoi-dap/question/715065.html

Thấy Online Math chọn thì không nỡ bỏ quên :v

Đề :  Chia số \(2013^{2016}\) thành tổng các số tự nhiên.

Tìm số dư của tổng lập phương các số tự nhiên đó cho 6.

Bài này chủ yếu là đánh lừa các bạn, vì không rõ ràng ở phần " tổng các số tự nhiên", chúng ta chẳng biết tổng của các số nào cả, có rất nhiều cách chia như vậy. Với những bài có dạng như này, mẹo là các bạn đưa về dạng tổng quá, sẽ dễ dàng chứng minh được.

Cách giải :

Đặt \(2013^{2016}=a_1+a_2+...+a_n\)

Tổng lập phương các số tự nhiên này là :

\(a_1^3+a_2^3+...+a_n^3\)

Có :

\(a_1^3+a_2^3+...+a_n^3-\left(a_1+a_2+...+a_n\right)\)

\(=\left(a_1^3-a_1\right)+\left(a_2^3-a_2\right)+...+\left(a_n^3-a_n\right)\)

\(=a_1\left(a_1^2-1\right)+a_2\left(a_2^2-1\right)+...+a_n\left(a_n^2-1\right)\)

\(=\left(a_1-1\right)a\left(a_1+1\right)+\left(a_2-1\right)a_2\left(a_2+1\right)+...+\left(a_n-1\right)a_n\left(a_n+1\right)\)

Thấy \(\left(a_1-1\right)a\left(a_1+1\right);\left(a_2-1\right)a_2\left(a_2+1\right);...;\left(a_n-1\right)a_n\left(a_n+1\right)\) là tích 3 số tự nhiên liên tiếp nên dễ dàng chứng minh nó chia hết cho 6.

Do đó \(a_1^3+a_2^3+...+a_n^3-\left(a_1+a_2+...+a_n\right)\) chia hết cho 6, tức \(a_1^3+a_2^3+...+a_n^3\) có cùng số dư với \(2013^{2016}\left(=a_1+a_2+...+a_n\right)\) khi chia cho 6.

Các bạn tự tìm số dư, vì phần còn lại khá đơn giản :)

3
6 tháng 10 2016

ồ...Hóa ra đây là: đáp án 

Sao bn không làm hết luôn đi

mà lớp 8 đã học đến kiến thức này rồi á???

Sao mà mk thấy sao sao í..

Chj mk hok lp 9 rồi mà có thấy khi nào chj làm những bài như thế này đâu (cho zù chj mk là h/s giỏi toán )

6 tháng 10 2016

Thực chất đây cũng có thể là bài khó lớp 7, nhưng mình thấy có hằng đẳng thức nên xếp vào lớp 8 :)

17 tháng 4 2017

Bạn có câu hỏi tương tự mình

17 tháng 4 2017

me too!

4 tháng 7 2017

Bài 1:

a) \(\left(\dfrac{1}{9}-1\right)\left(\dfrac{1}{10}-1\right)......\left(\dfrac{1}{2004}-1\right)\left(\dfrac{1}{2005}-1\right)\)

= \(\dfrac{-8}{9}.\dfrac{-9}{10}.......\dfrac{-2003}{2004}.\dfrac{-2004}{2005}\) = \(\dfrac{-8}{2005}\)

b) \(-2+\dfrac{1}{-2+\dfrac{1}{-2+\dfrac{1}{-2+3}}}\) = \(-2+\dfrac{1}{-2+\dfrac{1}{-2+\dfrac{1}{1}}}\)

= \(-2+\dfrac{1}{-2+\dfrac{1}{-1}}\) = \(-2+\dfrac{1}{-3}\) = \(\dfrac{-7}{3}\)

4 tháng 7 2017

\(\text{Câu 1 : }\) Tính

\(\text{a) }\left(\dfrac{1}{9}-1\right)\left(\dfrac{1}{10}-1\right)...\left(\dfrac{1}{2004}-1\right)\left(\dfrac{1}{2005}-1\right)\\ =\left(1-\dfrac{9}{9}\right)\left(\dfrac{1}{10}-\dfrac{10}{10}\right)...\left(\dfrac{1}{2004}-1\right)\left(\dfrac{1}{2005}-\dfrac{2005}{2005}\right)\\ =\dfrac{-8}{9}\cdot\dfrac{-9}{10}\cdot...\cdot\dfrac{-2003}{2004}\cdot\dfrac{-2004}{2005}\\ =\dfrac{\left(-8\right)\cdot\left(-9\right)\cdot..\cdot\left(-2003\right)\cdot\left(-2004\right)}{9\cdot10\cdot...\cdot2004\cdot2005}\\ =-\dfrac{8\cdot9\cdot...\cdot2003\cdot2004}{9\cdot10\cdot...\cdot2004\cdot2005}\\ =-\dfrac{8}{2005}\)

\(-2+\dfrac{1}{-2+\dfrac{1}{-2+\dfrac{1}{-2+3}}}\\ =-2+\dfrac{1}{-2+\dfrac{1}{-2+\dfrac{1}{1}}}\\ =-2+\dfrac{1}{-2+\dfrac{1}{-1}}\\ =-2+\dfrac{1}{-3}\\ =-2+\dfrac{-1}{3}=-\dfrac{7}{3}\)