Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{n-1}}{a_n}=\frac{a_n}{a_1}=k\)
=>\(\frac{a_1}{a_2}.\frac{a_2}{a_3}.....\frac{a_{n-1}}{a_n}.\frac{a_n}{a_1}=k.k.....k.k\)
=>\(k^n=\frac{a_1.a_2.....a_{n-1}.a_n}{a_2.a_3.....a_n.a_1}\)
=>\(k^n=1=1^n\)
=>k=1
=>\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{n-1}}{a_n}=\frac{a_n}{a_1}=1\)
=>\(a_1=a_2=...=a_n\)
\(=>\frac{a^2_1+a^2_2+...+a_n^2}{\left(a_1+a_2+...+a_n\right)^2}\)
=\(\frac{a^2_1+a^2_1+...+a_1^2}{\left(a_1+a_1+...+a_1\right)^2}\)
=\(\frac{n.a^2_1}{\left(n.a_1\right)^2}=\frac{n.a_1^2}{n^2.a^2_1}=\frac{1}{n}\)
thế này dc ko
Áp dụng t/c của dãy tỉ số bằng nhau, ta có :
\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{n-1}}{a_n}=\frac{a_n}{a_1}=\frac{a_1+a_2+...+a_{n-1}+a_n}{a_2+a_3+...+a_n+a_1}\Rightarrow a_1=a_2=...=a_n\)
\(\frac{a^1_2+a^2_2+...+a^2_n}{\left(a_1+a_2+...+a_n\right)}=\frac{na^2_1}{\left(na_1\right)^2}=\frac{1}{n}\)
\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}=.....=\frac{a_{n-1}}{a_n}=\frac{a_n}{a_1}\)
Áp dụng tính chất dãy tỉ số bằng nhau ,ta có :
\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}=.....=\frac{a_{n-1}}{a_n}=\frac{a_n}{a_1}=\frac{a_1+a_2+....+a_n}{a_2+a_3+....+a_n+a_1}=1\)
=> a1 = a2
a2 = a3
.........
an - 1 = an
an = a1
=> a1 = a2 = a3 = ....... = an - 1 = an
MÀ \(a_1=-\sqrt{5}\)
=> a1 = a2 = a3 = ....... = an - 1 = an = \(-\sqrt{5}\)
Chả biết đúng hay sai! Cứ làm vậy
Ta có: \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{n-1}}{a_n}=\frac{a_n}{a_1}\)
\(=\frac{a_1+a_2+...+a_{n-1}+a_n}{a_2+a_3+..+a_n+a_1}=1\Rightarrow a_1=a_2=...=a_n\) (theo t/c tỉ dãy số bằng nhau)
Do đó:
a) \(\frac{a_1^2+a_2^2+...+a_n^2}{\left(a_1+a_2+...+a_n\right)^2}=\frac{na_1^2}{\left(na_1\right)^2}=\frac{na_1^2}{n^2a_1^2}=\frac{1}{n}\)
b) \(\frac{a_1^7+a_2^7+...+a_n^7}{\left(a_1+a_2+...+a_n\right)^7}=\frac{na_1^7}{\left(na_1\right)^7}=\frac{na_1^7}{n^7a_1^7}=\frac{n}{n^7}\)
Bạn gì có nhãn "CTV" gì ấy trả lời đúng không vậy mn? Đang bí bài này...=((
a) Sửa lại đề \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=......=\frac{a_{n-1}}{a_n}=\frac{a_n}{a_1}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=..........=\frac{a_{n-1}}{a_n}=\frac{a_n}{a_1}=\frac{a_1+a_2+......+a_{n-1}+a_n}{a_2+a_3+........+a_n+a_1}=1\)( vì \(a_1+a_2+.......+a_n\ne0\))
\(\Rightarrow a_1=a_2\); \(a_2=a_3\); ........ ; \(a_{n-1}=a_n\); \(a_n=a_1\)
\(\Rightarrow a_1=a_2=........=a_n\)( đpcm )
b) Vì \(a_1=a_2=.......=a_n\)\(\Rightarrow a_1^{10}=a_2^{10}=.......=a_n^{10}\)
Ta có: \(A=\frac{a_1^{10}+a_2^{10}+.........+a_n^{10}}{\left(a_1+a_2+.......+a_n\right)^{10}}=\frac{n.a_1^{10}}{\left(n.a_1\right)^{10}}=\frac{n.a_1^{10}}{n^{10}.a_1^{10}}=\frac{n}{n^{10}}=\frac{1}{n^9}\)
Vậy \(A=\frac{1}{n^9}\)