Tìm x
a) 7 - ( 2x - 1/3 )\(^2\) = 3
b) ( 2x + 1/3 )\(^2\) + 1/2 = 3/4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(\left|2x+5\right|\ge21\Rightarrow2x+5\ge21\)hoặc \(2x+5<-21\)<=> \(x\ge8\) hoặc \(x<-13\)
2)
a) |2x-3|>=0 => A>=0-5=-5 => Min A=-5 <=> x=3/2
b) \(\left|2x-1\right|+\left|3-2x\right|\ge\left|2x-1+3-2x\right|=\left|2\right|=2\Rightarrow B\ge2+5=7\)=> MinB=7 <=>x=1
3)
\(\left|2x-1\right|\ge0\Rightarrow-\left|2x-1\right|\le0\Leftrightarrow A\le0+7=7\Rightarrow MaxA=7\Leftrightarrow x=-\frac{1}{2}\)
b)
th1: nếu x<-3/2 => B=-2x-3+2x+2=-1
th2: nếu \(-\frac{3}{2}\le x\le-1\)=> B=2x+3+2x+2=4x+5
ta có:\(-\frac{3}{2}\le x\le-1\Rightarrow-6\le4x\le-4\Leftrightarrow-1\le4x+5\le1\Rightarrow-1\le B\le1\)
th3: nếu x>-1 => B=2x+3-2x-2=1=>
Max B=1 <=> x>-1 hoặc \(-\frac{3}{2}\le x\le-1\)
2b) Áp dụng bất đẳng thức giá trị tuyệt đối: |a| + |b| \(\ge\) |a + b|. Dấu "=" xảy ra khi tích a.b \(\ge\) 0
Ta có: B = |2x - 1| + |3 - 2x| + 5 \(\ge\) |2x - 1+3 - 2x| + 5 = |2| + 5 = 7
=> Min B = 7 khi
(2x - 1)( 3 - 2x) \(\ge\) 0 => (2x - 1)(2x - 3) \(\le\) 0
Mà 2x - 1 > 2x - 3 nên 2x - 1 \(\ge\) 0 và 2x - 3 \(\le\) 0
=> x \(\ge\) 1/2 và x \(\le\) 3/2
1)
2x.(x-2) - x.(2x+1) = 3
=> 2x2 - 4x - 2x2 - x = 3
=> (2x2 - 2x2 ) - (4x+x) = 3
=> -5x = 3
=> x = \(\dfrac{-3}{5}\)
2) (2x-1).(x-2) - (x+3).(2x-7) = 3
=> 2x2 - 4x - x + 2 - 2x2 + 7x - 6x + 21 = 3
=> (2x2 - 2x2) - (4x + 6x + x - 7x) + 2 + 21 = 3
=> -4x = -20
=> x = -20 : (-4)
=> x = 5
3) (x - 5).(-x + 4) - (x - 1).(x + 3) = -2x2
=> Bạn tách tương tự như mấy câu 2 nhé! Nếu không làm được thì bảo mình
a, \(\frac{x}{5}-\frac{2}{3}+2x=\frac{1}{2}\)
\(\frac{6x}{30}-\frac{20}{30}+\frac{60x}{30}=\frac{15}{30}\)
\(\frac{66x-20}{30}=\frac{15}{30}\)
\(\Rightarrow\) 66x - 20 = 15
66x = 15 + 20
66x = 35
x = \(\frac{35}{66}\)
Vậy x = \(\frac{35}{66}\)
b, \(\frac{5}{2}-3\left(\frac{1}{3}-x\right)=\frac{1}{7}\)
\(\frac{5}{2}-1+3x=\frac{1}{7}\)
\(\frac{3}{2}+3x=\frac{1}{7}\)
3x = \(\frac{1}{7}-\frac{3}{2}\)
3x = \(\frac{-19}{14}\)
x = \(\frac{-19}{42}\)
Vậy x = \(\frac{-19}{42}\)
Phần c lỗi, chắc như thế này
c, \(4\cdot\left(\frac{1}{2}-x\right)+\frac{1}{2}=\frac{-5}{6}+x\)
\(2-4x+\frac{1}{2}=\frac{-5}{6}+x\)
\(\frac{5}{2}-4x=\frac{-5}{6}+x\)
\(-4x-x=\frac{-5}{6}-\frac{5}{2}\)
\(-5x=\frac{-10}{3}\)
x = \(\frac{2}{3}\)
Vậy x = \(\frac{2}{3}\)
Chúc bn học tốt
a) (2x - 1).3⁴ = 3⁷
2x - 1 = 3⁷ : 3⁴
2x - 1 = 3³
2x - 1 = 27
2x = 27 + 1
2x = 28
x = 28 : 2
x = 14
Câu b em ghi đề chính xác lại
Em xem câu b phải vầy không?
2ˣ⁺¹ + 4.2ˣ = 3.2¹²
2ˣ.(2 + 4) = 3.2.2¹¹
2ˣ.6 = 6.2¹¹
2ˣ = 2¹¹
x = 11
a, 12 - (2\(x^2\) - 3) = 7
2\(x^2\) - 3 = 12 - 7
2\(x^2\) - 3 = 5
2\(x^2\) = 8
\(x^2\) = 4
\(\left[{}\begin{matrix}x=-2\\x=2\end{matrix}\right.\)
a) \(x\left(2x+1\right)-x^2\left(x+2\right)+\left(x^3-x+3\right)=3\)
\(\Leftrightarrow2x^2+x-x^3-2x^2+x^3-x+3=3\)
\(\Leftrightarrow3=3\)( Luôn đúng với mọi x )
Vậy phương trình nghiệm đúng với mọi x
b) \(4\left(x-6\right)-x^2\left(2+3x\right)+x\left(5x-4\right)+3x\left(x-1\right)=12x+12\)
\(\Leftrightarrow4x-24-2x^2-3x^3+5x^2-4x+3x^2-3x=12x+12\)
\(\Leftrightarrow-3x^3+6x^2-3x-24=12x+12\)
\(\Leftrightarrow-3x^3+6x^2-3x-24-12x-12=0\)
\(\Leftrightarrow-3x^3+6x^2-15x-36=0\)
Đến đây xem lại đề bạn nhớ :D Tìm thì tìm được nhưng thấy nó sai sai kiểu gì í
c) \(\left(3x+1\right)\left(x-2\right)=\left(2-x\right)\left(-3x-5\right)\)
\(\Leftrightarrow3x\left(x-2\right)+1\left(x-2\right)=2\left(-3x-5\right)-x\left(-3x-5\right)\)
\(\Leftrightarrow3x^2-6x+x-2=-6x-10+3x^2+5x\)
\(\Leftrightarrow3x^2-6x+x+6x-3x^2-5x=-10+2\)
\(\Leftrightarrow-4x=-8\)
\(\Leftrightarrow x=2\)
d) \(\left(x+3\right)\left(x+5\right)-x\left(x+7\right)=2x+8\)
\(\Leftrightarrow x\left(x+5\right)+3\left(x+5\right)-x\left(x+7\right)=2x+8\)
\(\Leftrightarrow x^2+5x+3x+15-x^2-7x=2x+8\)
\(\Leftrightarrow x^2+5x+3x-x^2-7x-2x=8-15\)
\(\Leftrightarrow-x=-7\)
\(\Leftrightarrow x=7\)
a, \(x\left(2x-1\right)-x^2\left(x+2\right)+\left(x^3-x+3\right)=3\)
\(\Leftrightarrow2x^2-x-x^3-2x^2+x^3-x+3=3\)
\(\Leftrightarrow-2x=0\Leftrightarrow x=0\)
b, \(4\left(x-6\right)-x^2\left(2+3x\right)+x\left(5x-4\right)+3x\left(x-1\right)=12x+12\)
\(\Leftrightarrow4x-24-2x^2-3x^3+5x^2-4x+3x^2-3x=12x+12\)
\(\Leftrightarrow-3x-24+6x^2-3x^3=12x+12\)
\(\Leftrightarrow-15x-36+6x^2-3x^3=0\)
Lớp 8 chưa hc vô tỉ đâu ... vô nghiệm
c, \(\left(3x+1\right)\left(x-2\right)=\left(2-x\right)\left(-3x-5\right)\)
\(\Leftrightarrow3x^2-5x-2=-x-10+3x^2\)
\(\Leftrightarrow-4x+8=0\Leftrightarrow x=2\)
d, \(\left(x+3\right)\left(x+5\right)-x\left(x+7\right)=2x+8\)
\(\Leftrightarrow x^2+8x+15-x^2-7x=2x+8\)
\(\Leftrightarrow x+15=2x+8\Leftrightarrow-x+7=0\Leftrightarrow x=7\)
1a) -3x2(2x3 - 2x + 1/3) = -6x5 + 6x3 - x2
b) (x4 + 2x3 - 2/3).(-3x4) = -3x8 - 6x7 + 2x4
c) (x + 3)(x - 4) = x2 - 4x + 3x - 12 = x2 - x - 12
d)(x - 4)(x2 + 4x + 16) = (x - 4)(x2 + 4x + 42) = x3 - 64
e) 4(x - 1/2)(x + 1/2)(4x2 + 1) =4(x2 - 1/4)(4x2 + 1) = 4(4x4 + x2 - x2 - 1/4) = 4(4x4 - 1/4) = 16x4 - 1
B2. a) (2 - x)(x2 + 2x + 4) + x(x - 3)(x + 4) - x2 + 24 = 0
=> 8 - x3 + x(x2 + 4x - 3x - 12) - x2 + 24 = 0
=> 8 - x3 + x3 + x2 - 12x - x2 + 24 = 0
=> -12x + 32 = 0
=> -12x = -32
=> x = -32 : (-12) = 8/3
b) (x/2 + 3)(5 - 6x) + (12x - 2)(x/4 + 3) = 0
=> 5x/2 - 3x2 + 15 - 18x + 3x2 + 36x - x/2 - 6 = 0
=> 20x + 9 = 0
=> 20x = -9
=> x = -9/20
a) \(7-\left(2x-\dfrac{1}{3}\right)^2=3\)
\(\left(2x-\dfrac{1}{3}\right)^2=7-3\)
\(\left(2x-\dfrac{1}{3}\right)^2=4\)
\(\left(2x-\dfrac{1}{3}\right)^2=2^2\)
TH1: \(2x-\dfrac{1}{3}=2\)
\(2x=2+\dfrac{1}{3}=\dfrac{7}{3}\)
\(x=\dfrac{7}{3}:2=\dfrac{7}{6}\)
TH2: \(2x-\dfrac{1}{3}=-2\)
\(2x=-2+\dfrac{1}{3}=-\dfrac{5}{3}\)
\(x=-\dfrac{5}{3}:2=\dfrac{-5}{6}\)
b) \(\left(2x+\dfrac{1}{3}\right)^2+\dfrac{1}{2}=\dfrac{3}{4}\)
\(\left(2x+\dfrac{1}{3}\right)^2=\dfrac{3}{4}-\dfrac{1}{2}\)
\(\left(2x+\dfrac{1}{3}\right)^2=\dfrac{1}{4}\)
\(\left(2x+\dfrac{1}{3}\right)^2=\left(\dfrac{1}{2}\right)^2\)
TH1: \(2x+\dfrac{1}{3}=\dfrac{1}{2}\)
\(2x=\dfrac{1}{2}-\dfrac{1}{3}=\dfrac{1}{6}\)
\(x=\dfrac{1}{6}:2=\dfrac{1}{12}\)
TH2: \(2x+\dfrac{1}{3}=-\dfrac{1}{2}\)
\(2x=-\dfrac{1}{2}-\dfrac{1}{3}=-\dfrac{5}{6}\)
\(x=\dfrac{-5}{6}:2=\dfrac{-5}{12}\)