K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2017

 a² + b² + c² + d² + e² ≥ a(b + c + d + e) 

Ta có: a² + b² + c² + d² + e² 

= (a²/4 + b²) + (a²/4 + c²) + (a²/4 + d²) + (a²/4 + e²) 

Lại có: (a/2 - b)² ≥ 0 <=> a²/4 - ab + b² ≥ 0 <=> a²/4 + b² ≥ ab 

Tương tự ta có: 

. a²/4 + c² ≥ ac 
. a²/4 + d² ≥ ad 
. a²/4 + e² ≥ ae 

--> (a²/4 + b²) + (a²/4 + c²) + (a²/4 + d²) + (a²/4 + e²) ≥ ab + ac + ad + ae 

<=> a² + b² + c² + d² + e² ≥ a(b + c + d + e) --> đ.p.c.m 

Dấu " = " xảy ra <=> a/2 = b = c = d = e 
 

25 tháng 9 2017

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)

\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}\right)^3=-\frac{1}{c^3}\)

\(\Leftrightarrow\frac{1}{a^3}+\frac{3}{a^2b}+\frac{3}{ab^2}+\frac{1}{b^3}=-\frac{1}{c^3}\)

\(\Leftrightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=-\frac{3}{a^2b}-\frac{3}{ab^2}=-\frac{3}{ab}\left(\frac{1}{a}+\frac{1}{b}\right)\)

\(\Leftrightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)

\(\Rightarrow abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)=\frac{3}{abc}.abc\)

\(\Rightarrow\frac{bc}{a^2}+\frac{ca}{b^2}+\frac{ac}{b^2}=3\)

Ta có : \(\frac{a^2+b^2}{2}=ab\Rightarrow a^2+b^2=2ab\)

\(\Rightarrow a^2-ab+b^2=0\Rightarrow\left(a-b\right)^2=0\Rightarrow a=b\)

Tương tự : \(\frac{b^2+c^2}{2}=bc\Rightarrow b=c\)

\(\frac{a^2+c^2}{2}=ac\Rightarrow a=c\)

Áp dụng t/c bắc cầu ta dc : \(a=b=c\)

\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=3a\times3=9a\)

=>a2+b2=2ab

=>a2-2ab+b2=0

=>(a-b)2=0=>a=b

tương tự=>b=c

=>a=b=c

\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=3a.3=9a\)

24 tháng 9 2016

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=1+\frac{a}{b}+\frac{b}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\)

\(=\left(1+1+1\right)+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\)

\(=3+\frac{a^2+b^2}{ab}+\frac{a^2+c^2}{ac}+\frac{b^2+c^2}{bc}\)

\(=3+\frac{a^2+b^2}{\frac{a^2+b^2}{2}}+\frac{a^2+c^2}{\frac{a^2+c^2}{2}}+\frac{b^2+c^2}{\frac{b^2+c^2}{2}}\)

\(=3+2+2+2=9\)

22 tháng 10 2016

Câu 1:

  • Chứng minh a3+b3+c3=3abc thì a+b+c=0

\(a^3+b^3+c^3=3abc\Rightarrow a^3+b^3+c^3-3abc=0\)

\(\Rightarrow\left(a+b\right)^3-3a^2b-3ab^2+c^3-3abc=0\)

\(\Rightarrow\left[\left(a+b\right)^3+c^3\right]-3abc\left(a+b+c\right)=0\)

\(\Rightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)

\(\Rightarrow0=0\) Đúng (Đpcm)

  • Chứng minh a3+b3+c3=3abc thì a=b=c

​Áp dụng Bđt Cô si 3 số ta có:

\(a^3+b^3+c^3\ge3\sqrt[3]{a^3b^3c^3}=3abc\)

Dấu = khi a=b=c (Đpcm)

 

 

 

22 tháng 10 2016

Câu 2

Từ \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=3\cdot\frac{1}{abc}\)

Ta có:

\(\frac{ab}{c^2}+\frac{bc}{a^2}+\frac{ac}{b^2}=\frac{abc}{c^3}+\frac{abc}{a^3}+\frac{abc}{b^3}\)

\(=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\)

\(=abc\cdot3\cdot\frac{1}{abc}=3\)

2 tháng 1 2017

từ giả thiết ta có

\(\frac{1}{bc-a^2}=\frac{1}{b^2-ca}+\frac{1}{c^2-ab}=\frac{c^2-ab+b^2-ca}{\left(b^2-ca\right)\left(c^2-ab\right)}\)

Nhân hai vế với \(\frac{a}{bc-a^2}\) ta có:

\(\frac{a}{\left(bc-a^2\right)^2}=\frac{ac^2-a^2b+ab^2-ca^2}{\left(bc-a^2\right)\left(b^2-ca\right)\left(c^2-ab\right)}\)

làm tương tự với hai số hạng còn lại ta được:

\(\frac{b}{\left(ca-b^2\right)^2}=\frac{bc^2-ab^2+a^2b-b^2c}{\left(bc-a^2\right)\left(b^2-ca\right)\left(c^2-ab\right)}\);\(\frac{c}{\left(ab-c^2\right)^2}=\frac{b^2c-c^2a+a^2c-bc^2}{\left(bc-a^2\right)\left(b^2-ca\right)\left(c^2-ab\right)}\)

cộng ba vế của đẳng thức trên ta được kq là 0 hihi

2 tháng 1 2017

cách kia dài quá

Đặt \(x=bc-a^2;y=ac-b^2;z=ab-c^2\)

Suy ra cần chứng minh \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\) thì \(\frac{a}{x^2}+\frac{b}{y^2}+\frac{c}{z^2}=0\)

Xét \(T=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\right)\).....

AH
Akai Haruma
Giáo viên
2 tháng 3 2017

Bài 3)

BĐT cần chứng minh tương đương với:

\(\left ( \frac{a}{a+b} \right )^2+\left ( \frac{b}{b+c} \right )^2+\left ( \frac{c}{c+a} \right )^2\geq \frac{1}{2}\left ( 3-\frac{a}{a+b}-\frac{b}{b+c}-\frac{c}{c+a} \right )\)

Để cho gọn, đặt \((x,y,z)=\left (\frac{b}{a},\frac{c}{b},\frac{a}{c}\right)\) \(\Rightarrow xyz=1\).

BĐT được viết lại như sau:

\(A=2\left [ \frac{1}{(x+1)^2}+\frac{1}{(y+1)^2}+\frac{1}{(z+1)^2} \right ]+\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\geq 3\) \((\star)\)

Ta nhớ đến hai bổ đề khá quen thuộc sau:

Bổ đề 1: Với \(a,b>0\) thì \(\frac{1}{(a+1)^2}+\frac{1}{(b+1)^2}\geq \frac{1}{ab+1}\)

Cách CM rất đơn giản, Cauchy - Schwarz:

\((a+1)^2\leq (a+b)(a+\frac{1}{b})\Rightarrow \frac{1}{(a+1)^2}\geq \frac{b}{(a+b)(ab+1)}\)

Tương tự với biểu thức còn lại và cộng vào thu được đpcm

Bổ đề 2: Với \(x,y>0,xy\geq 1\) thì \(\frac{1}{x^2+1}+\frac{1}{y^2+1}\geq \frac{2}{xy+1}\)

Cách CM: Quy đồng ta có đpcm.

Do tính hoán vị nên không mất tổng quát giả sử \(z=\min (x,y,z)\)

\(\Rightarrow xy\geq 1\). Áp dụng hai bổ đề trên:

\(A\geq 2\left [ \frac{1}{xy+1}+\frac{1}{(z+1)^2} \right ]+\frac{2}{\sqrt{xy}+1}+\frac{1}{z+1}=2\left [ \frac{z}{z+1}+\frac{1}{(z+1)^2} \right ]+\frac{2\sqrt{z}}{\sqrt{z}+1}+\frac{1}{z+1}\)

\(\Leftrightarrow A\geq \frac{2(z^2+z+1)}{(z+1)^2}+\frac{1}{z+1}+2-\frac{2}{\sqrt{z}+1}\geq 3\)

\(\Leftrightarrow 2\left [ \frac{z^2+z+1}{(z+1)^2}-\frac{3}{4} \right ]+\frac{1}{z+1}-\frac{1}{2}-\left ( \frac{2}{\sqrt{z}+1}-1 \right )\geq 0\)

\(\Leftrightarrow \frac{(z-1)^2}{2(z+1)^2}-\frac{z-1}{2(z+1)}+\frac{z-1}{(\sqrt{z}+1)^2}\geq 0\Leftrightarrow (z-1)\left [ \frac{1}{(\sqrt{z}+1)^2}-\frac{1}{(z+1)^2} \right ]\geq 0\)

\(\Leftrightarrow \frac{\sqrt{z}(\sqrt{z}-1)^2(\sqrt{z}+1)(z+\sqrt{z}+2)}{(\sqrt{z}+1)^2(z+1)^2}\geq 0\) ( luôn đúng với mọi \(z>0\) )

Do đó \((\star)\) được cm. Bài toán hoàn tất.

Dấu bằng xảy ra khi \(a=b=c\)

P/s: Nghỉ tuyển lâu rồi giờ mới gặp mấy bài BĐT phải động não. Khuya rồi nên xin phép làm bài 3 trước. Hai bài kia xin khiếu. Nếu làm đc chắc tối mai sẽ post.

2 tháng 3 2017

Bài 1:

Cho \(a=b=c=\dfrac{1}{\sqrt{3}}\). Khi đó \(M=\sqrt{3}-2\)

Ta sẽ chứng minh nó là giá trị nhỏ nhất

Thật vậy, đặt c là giá trị nhỏ nhất của a,b,c. Khi đó, ta cần chứng minh

\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}-\frac{2(a^2+b^2+c^2)}{\sqrt{ab+ac+bc}}\geq(\sqrt3-2)\sqrt{ab+ac+bc}\)

\(\Leftrightarrow\sqrt{ab+ac+bc}\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}-\sqrt{3(ab+ac+bc)}\right)\geq2(a^2+b^2+c^2-ab-ac-bc)\)

\(\Leftrightarrow\frac{a^2}{b}+\frac{b^2}{a}-a-b+\frac{b^2}{c}+\frac{c^2}{a}-\frac{b^2}{a}-c+a+b+c-\sqrt{3(ab+ac+bc)}\geq\)

\(\geq2((a-b)^2+(c-a)(c-b))\)

\(\Leftrightarrow(a-b)^2\left(\frac{1}{a}+\frac{1}{b}-2\right)+(c-a)(c-b)\left(\frac{1}{a}+\frac{b}{ac}-2\right)+a+b+c-\sqrt{3(ab+ac+bc)}\geq0\)

Đúng bởi \(\frac{1}{a}+\frac{1}{b}-2>0;\frac{1}{a}+\frac{b}{ac}-2\geq\frac{1}{a}+\frac{1}{a}-2>0\)

\(a+b+c-\sqrt{3(ab+ac+bc)}=\frac{(a-b)^2+(c-a)(c-b)}{a+b+c+\sqrt{3(ab+ac+bc)}}\geq0\)

BĐT đã được c/m. Vậy \(M_{Min}=\sqrt{3}-2\Leftrightarrow a=b=c=\dfrac{1}{\sqrt{3}}\)

P/s: Nhìn qua thấy ngon mà làm mới thấy thật sự là "choáng"

18 tháng 8 2017

cái mẫu cuối c/.... có mũ 2 ko bạn

18 tháng 8 2017

dạ có ạ