K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2024

mọi người giúp mình nha

 

17 tháng 9 2017

\(a,\left(3x+4\right)\left(3x-4\right)-\left(2x+5\right)^2=\left(x-5\right)^2+\left(2x+1\right)^2-\left(x^2-2x\right)+\left(x-1\right)^2\\ \Leftrightarrow\left(9x^2-16\right)-\left(4x^2+20x+25\right)=x^2-10x+25+4x^2+4x+1-x^2+2x+x^2-2x+1\\ \Leftrightarrow9x^2-16-4x^2-20x-25=5x^2-6x+27\\ \Leftrightarrow5x^2-20x-41=5x^2-5x+27\\ \Leftrightarrow-15x=68\\ \Leftrightarrow x=-\dfrac{68}{15}\)Vậy..

Câu sau cũng tương tự nhé

17 tháng 9 2017

thanks

26 tháng 2 2021

a) \(9x^2-1=\left(3x-1\right)\left(5x+8\right)\)

\(\Leftrightarrow\left(3x-1\right)\left(3x+1\right)-\left(3x-1\right)\left(5x+8\right)=0\)

\(\Leftrightarrow\left(3x-1\right)\left(3x+1-5x-8\right)=0\)

\(\Leftrightarrow\left(3x-1\right)\left(-2x-7\right)=0\)

\(TH_1:3x-1=0\)

\(\Leftrightarrow x=\dfrac{1}{3}\)

\(TH_2:-2x-7=0\)

\(\Leftrightarrow x=-\dfrac{7}{2}\)

Vậy pt có tập nghiệm \(S=\left\{\dfrac{1}{3};-\dfrac{7}{2}\right\}\)

b) \(2x^3-5x^2+3x=0\)

\(\Leftrightarrow2x^3-2x^2-3x^2+3x=0\)

\(\Leftrightarrow2x^2\left(x-1\right)-3x\left(x-1\right)=0\)

\(\Leftrightarrow x\left(x-1\right)\left(2x-3\right)=0\)

\(TH_1:x=0\)

\(TH_2:x-1=0\)

\(\Leftrightarrow x=1\)

\(TH_3:2x-3=0\)

\(\Leftrightarrow x=\dfrac{3}{2}\)

Vậy pt có tập nghiệm \(S=\left\{0;1;\dfrac{3}{2}\right\}\)

c) \(9x^2-16-x\left(3x+4\right)=0\)

\(\Leftrightarrow\left(9x^2-16\right)-x\left(3x+4\right)=0\)

\(\Leftrightarrow\left(3x-4\right)\left(3x+4\right)-x\left(3x+4\right)=0\)

\(\Leftrightarrow\left(3x+4\right)\left(2x-4\right)=0\)

\(TH_1:3x+4=0\)

\(\Leftrightarrow x=-\dfrac{4}{3}\)

\(TH_2:2x-4=0\)

\(\Leftrightarrow x=2\)

Vậy pt có tập nghiệm \(S=\left\{-\dfrac{4}{3};2\right\}\)

d) \(\dfrac{5x+4}{3}-1=\dfrac{3x-2}{4}\)

\(\Leftrightarrow\dfrac{20x+16}{12}-\dfrac{12}{12}=\dfrac{9x-6}{12}\)

\(\Rightarrow20x+16-12=9x-6\)

\(\Leftrightarrow20x-9x=-6-16+12\)

\(\Leftrightarrow11x=-10\)

\(\Leftrightarrow x=-\dfrac{10}{11}\)

Vậy pt có nghiệm duy nhất \(x=-\dfrac{10}{11}\)

26 tháng 2 2021

a) Ta có: \(9x^2-1=\left(3x-1\right)\left(5x+8\right)\)

\(\Leftrightarrow\left(3x-1\right)\left(3x+1\right)=\left(3x-1\right)\left(5x+8\right)\)

\(\Leftrightarrow3x+1=5x+8\)

\(\Leftrightarrow3x-5x=8-1\)

\(\Leftrightarrow-2x=7\)

\(\Leftrightarrow x=\dfrac{-7}{2}\)

Vậy \(X=\dfrac{-7}{2}\)

b) Ta có: \(2x^3-5x^2+3x=0\)

\(\Leftrightarrow x\left(2x^2-5x+3\right)=0\)

\(\Leftrightarrow x\left[\left(2x^2-2x\right)-\left(3x-3\right)\right]=0\)

\(\Leftrightarrow x\left(x-1\right)\left(2x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-1=0\\2x-3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=\dfrac{3}{2}\end{matrix}\right.\)

Vậy \(x=1\) hoặc \(x=0\) hoặc \(x=\dfrac{3}{2}\)

c) \(9x^2-16-x\left(3x+4\right)=0\)

\(\Leftrightarrow9x^2-16-3x^2-4x=0\)

\(\Leftrightarrow6x^2-4x-16=0\)

\(\Leftrightarrow2\left(3x^2-2x-8\right)=0\)

\(\Leftrightarrow3x^2-6x+4x-8=0\)

\(\Leftrightarrow\left(x-2\right)\left(3x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\3x+4=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{-4}{3}\end{matrix}\right.\)

Vậy \(x=2\) hoặc \(x=\dfrac{-4}{3}\)

d) \(\dfrac{5x+4}{3}-1=\dfrac{3x-2}{4}\)

\(\Leftrightarrow\dfrac{20x+16}{12}-\dfrac{12}{12}=\dfrac{9x-6}{12}\)

\(\Leftrightarrow20x+16-12=9x-6\)

\(\Leftrightarrow20x+16-12-9x+6=0\)

\(\Leftrightarrow11x+10=0\)

\(\Leftrightarrow x=\dfrac{-10}{11}\)

Vậy \(x=\dfrac{-10}{11}\)

16 tháng 4 2021

a,\(\left|-5x\right|\)=3x-16

\(\Leftrightarrow\)\(\left[{}\begin{matrix}-5x=3x-16\\-5x=-3x+16\end{matrix}\right.\)            \(\Leftrightarrow\)\(\left[{}\begin{matrix}-8x=-16\\-2x=16\end{matrix}\right.\)                 \(\left[{}\begin{matrix}x=2\\x=-8\end{matrix}\right.\)

 

22 tháng 7 2017

a) \(\left(2x+3\right)\left(x-4\right)+\left(x+5\right)\left(x-2\right)=\left(3x-5\right)\left(x-4\right)\)

\(\Leftrightarrow2x^2-8x+3x-12+x^2-2x-5x+10=3x^2-12x-5x+20\)

\(\Leftrightarrow2x^2-8x+3x-12+x^2-2x+10=3x^2-12x+20\)

\(\Leftrightarrow3x^2-7x-2=3x^2-12x+20\)

\(\Leftrightarrow-7x+12x=20+2\)

\(\Leftrightarrow5x=22\)

\(\Rightarrow x=\dfrac{22}{5}\)

tick cho mk nha

22 tháng 7 2017

b) \(\left(8x-3\right)\left(3x+2\right)-\left(4x+7\right)\left(x+4\right)=\left(2x+1\right)\left(5x-1\right)\)

\(\Leftrightarrow24x^2+16x-9x-6-4x^2-23x-28=10x^2+3x-1\)

\(\Leftrightarrow20x^2-16x-34-10x^2-3x+1=0\)

\(\Leftrightarrow10x^2-19x-33=0\)

\(\Delta=\left(-19\right)^2-4.10.\left(-33\right)=1320\)

\(x_1=3;x_2=\dfrac{-11}{10}\)

Tick cho mk nha

Bài 2:

a: \(=2x^4-x^3-10x^2-2x^3+x^2+10x=2x^3-3x^3-9x^2+10x\)

b: \(=\left(x^2-15x\right)\left(x^2-7x+3\right)\)

\(=x^4-7x^3+3x^2-15x^3+105x^2-45x\)

\(=x^4-22x^3+108x^2-45x\)

c: \(=12x^5-18x^4+30x^3-24x^2\)

d: \(=-3x^6+2.4x^5-1.2x^4+1.8x^2\)

17 tháng 6 2019

\(A=\left(a^2+b^2-c^2\right)^2-\left(a^2-b^2+c^2\right)^2-4a^2b^2\)

\(=\left(a^2+b^2-c^2+a^2-b^2+c^2\right)\left(a^2+b^2-c^2-a^2+b^2-c^2\right)-4a^2b^2\)

\(=2a^2.2b^2-4a^2b^2=0\)

\(C=\left(2-6x\right)^2+\left(2-5x\right)^2+2\left(6x-2\right)\left(2-5x\right)\)

\(=\left[\left(2-6x\right)+\left(2-5x\right)\right]^2\)

\(=\left[4-11x\right]^2\)

\(=16-88x+121x^2\)

chúc bn học tốt

28 tháng 5 2017

a) (x-1)(5x+3)=(3x-8)(x-1)

= (x-1)(5x+3)-(3x-8)(x-1)=0

=(x-1)[(5x+3)-(3x-8)]=0

=(x-1)(5x+3-3x+8)=0

=(x-1)(2x+11)=0

\(\Leftrightarrow\) x-1=0 hoặc 2x+11=0

\(\Leftrightarrow\) x=1 hoặc x=\(\dfrac{-11}{2}\)

Vậy S={1;\(\dfrac{-11}{2}\)}

b) 3x(25x+15)-35(5x+3)=0

=3x.5(5x+3)-35(5x+3)=0

=15x(5x+3)-35(5x+3)=0

=(5x+3)(15x-35)=0

\(\Leftrightarrow\) 5x+3=0 hoặc 15x-35=0

\(\Leftrightarrow\) x=\(\dfrac{-3}{5}\) hoặc x=\(\dfrac{7}{3}\)

Vậy S={\(\dfrac{-3}{5};\dfrac{7}{3}\)}

c) (2-3x)(x+11)=(3x-2)(2-5x)

=(2-3x)(x+11)-(3x-2)(2-5x)=0

=(3x-2)[(x+11)-(2-5x)]=0

=(3x-2)(x+11-2+5x)=0

=(3x-2)(6x+9)=0

\(\Leftrightarrow\) 3x-2=0 hoặc 6x+9=0

\(\Leftrightarrow\) x=\(\dfrac{2}{3}\) hoặc x=\(\dfrac{-3}{2}\)

Vậy S={\(\dfrac{2}{3};\dfrac{-3}{2}\)}

d) (2x2+1)(4x-3)=(2x2+1)(x-12)

=(2x2+1)(4x-3)-(2x2+1)(x-12)=0

=(2x2+1)[(4x-3)-(x-12)=0

=(2x2+1)(4x-3-x+12)=0

=(2x2+1)(3x+9)=0

\(\Leftrightarrow\)2x2+1=0 hoặc 3x+9=0

\(\Leftrightarrow\)x=\(\dfrac{1}{2}\)hoặc x=\(\dfrac{-1}{2}\) hoặc x=-3

Vậy S={\(\dfrac{1}{2};\dfrac{-1}{2};-3\)}

e) (2x-1)2+(2-x)(2x-1)=0

=(2x-1)[(2x-1)+(2-x)=0

=(2x-1)(2x-1+2-x)=0

=(2x-1)(x+1)=0

\(\Leftrightarrow\) 2x-1=0 hoặc x+1=0

\(\Leftrightarrow\) x=\(\dfrac{-1}{2}\) hoặc x=-1

Vậy S={\(\dfrac{-1}{2}\);-1}

f)(x+2)(3-4x)=x2+4x+4

=(x+2)(3-4x)=(x+2)2

=(x+2)(3-4x)-(x+2)2=0

=(x+2)[(3-4x)-(x+2)]=0

=(x+2)(3-4x-x-2)=0

=(x+2)(-5x+1)=0

\(\Leftrightarrow\) x+2=0 hoặc -5x+1=0

\(\Leftrightarrow\) x=-2 hoặc x=\(\dfrac{1}{5}\)

Vậy S={-2;\(\dfrac{1}{5}\)}

24 tháng 6 2018

b) \(\left(3x^2-2x+1\right).\left(3x^2+2x+1\right)-\left(3x^2+1\right)^2\)=\(\left(3x^2\right)^2-\left(2x+1\right)^2-\left(3x^2+1\right)^2\)=\(\left(3x^2\right)^2-[\left(2x\right)^2+4x+1]-[\left(3x^2\right)^2+6x^2+1]\)=\(\left(2x\right)^2+4x+1+6x^2-1\)=\(4x^2+4x+6x^2\)=\(10x^2+4x\)

c)\(\left(x^2-5x+2\right)^2-2\left(x^2-5x+2\right)\left(5x-2\right)+\left(5x-2\right)^2\)=\([\left(x^2-5x+2\right)-\left(5x-2\right)]^2\)=\(x^2-5x+2-5x+2\)=\(x^2-10x+4\)=\(x^2-4x+2^2-6x\)=\(\left(x-2\right)^2-6x\)

a)\(\left(2x^2-3x\right)\left(5x^2-2x+1\right)\)

\(=2x^2\left(5x^2-2x+1\right)-3x\left(5x^2-2x+1\right)\)

\(=10x^4-4x^3+2x^2-15x^3+6x^2-3x\)

\(=10x^4-19x^3+8x^2-3x\)

19 tháng 8 2020

a. \(\left(2x^2-3x\right)\left(5x^2-2x+1\right)\)

\(=10x^4-4x^3+2x^2-15x^3+6x^2-3x\)

\(=10x^4-19x^3+8x^2-3x\)

b. \(\left(2x^4-x^3+3x^2\right):\left(\frac{1}{3}x^2\right)\)

\(=\left(2x^4-x^3+3x^2\right).\frac{3}{x^2}\)

\(=0,6x^2-3x+0,9\)