biết a/a' + b/b' = 1 và b/b' + c/c' =1 . CMR abc + a'b'c' = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{a}{a'}+\frac{b'}{b}=1\Leftrightarrow\frac{ab+a'b'}{a'b}=1\Leftrightarrow ab+a'b'=a'b\Leftrightarrow abc+a'b'c=a'bc\left(1\right)\)
Lại có: \(\frac{b}{b'}+\frac{c'}{c}=1\Leftrightarrow\frac{bc+b'c'}{b'c}=1\Leftrightarrow bc+b'c'=b'c\Leftrightarrow a'bc+a'b'c'=a'b'c\left(2\right)\)
Từ (1) và (2) => \(abc+a'b'c+a'bc+a'b'c'=a'bc+a'b'c\)
\(\Leftrightarrow abc+a'b'c'=a'bc-a'bc+a'b'c-a'b'c\)
\(\Leftrightarrow abc+a'b'c'=0\left(đpcm\right)\)
Ta có: \(\frac{a}{a^,}+\frac{b^,}{b}=1\) \(\iff\) \(ab+a^,b^,=a^,b\) \(\iff\) \(abc+a^,b^,c=a^,bc\left(1\right)\)
Ta có:\(\frac{b}{b^,}+\frac{c^,}{c}=1\) \(\iff\) \(bc+b^,c^,=b^,c\) \(\iff\) \(a^,bc+a^,b^,c^,=a^,b^,c\left(2\right)\)
Từ\(\left(1\right)\) và \(\left(2\right)\) cộng vế với vế ta được : \(abc+a^,b^,c+a^,bc+a^,b^,c^,=a^,bc+a^,b^,c\)
\(\implies\) \(abc+a^,b^,c^,=0\left(đpcm\right)\)
#)Giải :
Ta có :
\(\frac{a}{a'}+\frac{b'}{b}=1\Leftrightarrow ab+a'b'=a'b\Leftrightarrow abc+a'b'c'=a'bc\left(1\right)\)(vì c khác 0)
\(\frac{b}{b'}=\frac{c'}{c}=1\Leftrightarrow bc+b'c'=b'c=\Leftrightarrow a'bc+a'b'c'=a'b'c\left(2\right)\)(vì a' khác 0)
Từ \(\left(1\right)\left(2\right)\Rightarrowđpcm\)
Vì \(\frac{a}{a'}+\frac{b'}{b}=1\) nên ab+a'b'=a'b' (1)
\(\frac{b}{b'}+\frac{c'}{c}=1\)nên bc+b'c'=b'c' (2)
nhân 2 vế của (1) với c, của (2) với a' rồi cộng theo từng vế hai đẳng thức , ta suy ra abc+a'b'c'=0
\(\frac{a}{a'}\)+\(\frac{b'}{b}\)=1 =>\(\frac{a}{a'}\)*\(\frac{b}{b'}\)+\(\frac{b'}{b}\)*\(\frac{b}{b'}\)=> \(\frac{ab}{a'b'}\)+1=\(\frac{b'}{b}\)=1-\(\frac{c'}{c}\)
=> \(\frac{ab}{a'b'}=\frac{-c}{c'}=>abc=-a'b'c'=>abc+a'b'c'=0\)
nhớ k cho mik nha bạn và cho mik hỏi mik có thể kết bạn với bạn ko?????
+)Ta có :\(\frac{a}{a^,}+\frac{b^,}{b}=1\) \(\iff\) \(ab+a^,b^,=a^,b\) \(\iff\) \(abc+a^,b^,c=a^,b^,c\left(1\right)\)
+)Ta có :\(\frac{b}{b^,}+\frac{c^,}{c}=1\)\(\iff\) \(bc+b^,c^,=b^,c\)\(\iff\) \(a^,bc+a^,b^,c^,=a^,b^,c^,\left(2\right)\)
Cộng \(\left(1\right)\) với \(\left(2\right)\) vế với vế ta được: \(abc+a^,b^,c+a^,bc+a^,b^,c^,=a^,bc+a^,b^,c\)
\(\implies\)\(abc+a^,b^,c^,=0\left(đpcm\right)\)
a/a' + b'/b = 1 <=> ab + a'b' = a'b <=> abc + a'b'c = a'bc (1) (vì c # 0)
b/b' + c'/c = 1 <=> bc + b'c' = b'c <=> a'bc + a'b'c' = a'b'c (2) (vì a' # 0)
(1) + (2) => đpcm
mk làm mà sai thì kệ nhá ^^
a/a' + b'/b = 1 <=> ab + a'b' = a'b <=> abc + a'b'c = a'bc ﴾1﴿ ﴾vì c # 0﴿
b/b' + c'/c = 1 <=> bc + b'c' = b'c <=> a'bc + a'b'c' = a'b'c ﴾2﴿ ﴾vì a' # 0﴿ ﴾1﴿ + ﴾2﴿ => đpcm
làm dc thì làm đi hỏi chi cho mệt, mà cái hình DQ và TLN đẹp đấy
Ta có : \(\frac{a}{a'}+\frac{b}{b'}=1\) ; \(\frac{b}{b'}+\frac{c}{c'}=1\)
\(\Rightarrow\left(\frac{a}{a'}+\frac{b}{b'}\right)=\left(\frac{b}{b'}+\frac{c}{c'}\right)\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\Rightarrow\frac{a+b-b+c}{a'+b'-b'+c}=\frac{a+1+c}{a'+1+c'}=\frac{a+c}{a'+c'}\)
\(\Rightarrow\frac{a}{a'}=\frac{c}{c'}\)
=> a.c' = a'.c
=> a.c' = a'.c = b.c' = b'.c = a.b' = a'.b
=> abc là số nguyên âm hoặc dương (*)
=> a'b'c' là số nguyên âm hoặc dương (**)
Từ (*) và (**)
=> -(abc) + a'b'c' = 0 (1)
=> abc+ -(a'b'c') = 0 (2)
Từ (1) và (2) => đpcm
Làm chi tiết ra hộ mình