K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2015

làm dc thì làm đi hỏi chi cho mệt, mà cái hình DQ và TLN đẹp đấy

30 tháng 12 2015

A / A' + B' / B=1 --->AB + A'B' = A'B (1)

B / B' + C'/ C=1--->BC +B'C' = B'C(2)

nhan 2 ve  cua pt 1 cho C

nhan 2 ve cua pt 2 cho A'

Cộng hai vế của pt (1) và (2) rồi triệt tiêu ta sẽ có kết quả. tự giải nhé

2 tháng 4 2017

a chịu

1 tháng 3 2020

Ta có: \(\frac{a}{a^,}+\frac{b^,}{b}=1\) \(\iff\) \(ab+a^,b^,=a^,b\) \(\iff\) \(abc+a^,b^,c=a^,bc\left(1\right)\)

Ta có:\(\frac{b}{b^,}+\frac{c^,}{c}=1\) \(\iff\) \(bc+b^,c^,=b^,c\) \(\iff\) \(a^,bc+a^,b^,c^,=a^,b^,c\left(2\right)\)

Từ\(\left(1\right)\) và \(\left(2\right)\) cộng vế với vế ta được : \(abc+a^,b^,c+a^,bc+a^,b^,c^,=a^,bc+a^,b^,c\)

\(\implies\) \(abc+a^,b^,c^,=0\left(đpcm\right)\)

25 tháng 9 2017

Ta có : \(\frac{a}{a'}+\frac{b}{b'}=1\) ; \(\frac{b}{b'}+\frac{c}{c'}=1\)

\(\Rightarrow\left(\frac{a}{a'}+\frac{b}{b'}\right)=\left(\frac{b}{b'}+\frac{c}{c'}\right)\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\Rightarrow\frac{a+b-b+c}{a'+b'-b'+c}=\frac{a+1+c}{a'+1+c'}=\frac{a+c}{a'+c'}\)

\(\Rightarrow\frac{a}{a'}=\frac{c}{c'}\)

=> a.c' = a'.c

=> a.c' = a'.c = b.c' = b'.c = a.b' = a'.b

=> abc là số nguyên âm hoặc dương (*)

=> a'b'c' là số nguyên âm hoặc dương (**)

Từ (*) và (**)     

=> -(abc) + a'b'c' = 0 (1)

=> abc+ -(a'b'c') = 0 (2)

Từ (1) và (2) => đpcm

25 tháng 9 2017

Làm chi tiết ra hộ mình

5 tháng 5 2017

Theo bđt tam giác ta có: a<b+c 

Do a>0 => a2<ab+ac 

Tương tự có b2<bc+ab;c2<ac+bc

Suy ra a2+b2+c2<2(ab+bc+ca)

1 tháng 3 2020

+)Ta có :\(\frac{a}{a^,}+\frac{b^,}{b}=1\) \(\iff\) \(ab+a^,b^,=a^,b\) ​​\(\iff\)​ \(abc+a^,b^,c=a^,b^,c\left(1\right)\)

+)Ta có :\(\frac{b}{b^,}+\frac{c^,}{c}=1\)\(\iff\) \(bc+b^,c^,=b^,c\)\(\iff\) \(a^,bc+a^,b^,c^,=a^,b^,c^,\left(2\right)\)

Cộng \(\left(1\right)\) với \(\left(2\right)\) vế với vế ta được: \(abc+a^,b^,c+a^,bc+a^,b^,c^,=a^,bc+a^,b^,c\)

\(\implies\)\(abc+a^,b^,c^,=0\left(đpcm\right)\)

18 tháng 10 2016

a/a' + b'/b = 1 <=> ab + a'b' = a'b <=> abc + a'b'c = a'bc (1) (vì c # 0) 
b/b' + c'/c = 1 <=> bc + b'c' = b'c <=> a'bc + a'b'c' = a'b'c (2) (vì a' # 0) 
(1) + (2) => đpcm

18 tháng 10 2016

mk làm mà sai thì kệ nhá ^^

a/a' + b'/b = 1 <=> ab + a'b' = a'b <=> abc + a'b'c = a'bc ﴾1﴿ ﴾vì c # 0﴿

b/b' + c'/c = 1 <=> bc + b'c' = b'c <=> a'bc + a'b'c' = a'b'c ﴾2﴿ ﴾vì a' # 0﴿ ﴾1﴿ + ﴾2﴿ => đpcm