K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔDAE vuông tại A và ΔDBF vuông tại B có

\(\widehat{ADE}\) chung

Do đó: ΔDAE~ΔDBF

=>\(\dfrac{DA}{DB}=\dfrac{DE}{DF}\)

=>\(\dfrac{DA}{DE}=\dfrac{DB}{DF}\)

=>\(DA\cdot DF=DB\cdot DE\)

b: Xét ΔDAB và ΔDEF có

\(\dfrac{DA}{DE}=\dfrac{DB}{DF}\)

\(\widehat{ADB}\) chung

Do đó ΔDAB~ΔDEF

=>\(\widehat{DBA}=\widehat{DFE}\)

c: Gọi C là giao điểm của DH với EF

Xét ΔDEF có

EA,FB là các đường cao

EA cắt FB tại H

Do đó: H là trực tâm của ΔDEF

=>DH\(\perp\)EF tại C

Xét ΔECH vuông tại C và ΔEAF vuông tại A có

\(\widehat{CEH}\) chung

Do đó: ΔECH~ΔEAF

=>\(\dfrac{EC}{EA}=\dfrac{EH}{EF}\)

=>\(EH\cdot EA=EC\cdot EF\)

Xét ΔFCH vuông tại C và ΔFBE vuông tại B có

\(\widehat{CFH}\) chung

Do đó: ΔFCH~ΔFBE

=>\(\dfrac{FC}{FB}=\dfrac{FH}{FE}\)

=>\(FH\cdot FB=FE\cdot FC\)

\(EH\cdot EA+FH\cdot FB=FE\cdot FC+EC\cdot FE=FE\left(FC+EC\right)=FE^2\)

a) Xét ΔAFH và ΔADB có

\(\widehat{AFH}=\widehat{ADB}\left(=90^0\right)\)

\(\widehat{BAD}\) chung

Do đó: ΔAFH∼ΔADB(g-g)

b) Xét ΔBHF và ΔCHE có

\(\widehat{BFH}=\widehat{CEH}\left(=90^0\right)\)

\(\widehat{BHF}=\widehat{CHE}\)(đối đỉnh)

Do đó: ΔBHF∼ΔCHE(g-g)

\(\Rightarrow\frac{BH}{CH}=\frac{HF}{HE}=k\)(tỉ số đồng dạng)

hay \(BH\cdot HE=CH\cdot HF\)(đpcm)

a) Xét tứ giác MKCH có 

\(\widehat{MKC}=\widehat{MHC}\left(=90^0\right)\)

\(\widehat{MKC}\) và \(\widehat{MHC}\) là hai góc cùng nhìn cạnh MC

Do đó: MKCH là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

17 tháng 5 2021

đề lằng nhằng:dựng cái gì vuông góc với AC??

17 tháng 2 2016

câu 1 sử dụng tính chất góc nội tiếp và góc tạo bởi tia tiếp tuyến và dây cung là xong nhé

17 tháng 2 2016

kẻ IK vuông góc với DG và DG cắt đường tròn ngoại tiếp tam giác DFM tại P ==> P là điểm chính giữa cung DF

vì IG vuông góc với DC==> IG // BC

do đó giờ cần chứng minh góc DIG=DBC ( 2 góc đồng vị là ra D;I;B thẳng hàng)

ta có góc DIG=cung DP

 góc DMF=1/2cung DF

MÀ cung DP=1/2cung DF( VÌ P là ĐIỂM CHÍNH GIỮA CUNG DF)

==> DIG=DMF

 mà góc DMF=DMC( 2 góc nội tiếp cùng chắn 1 cung)

==> góc DIP=DBC

mà DBC+GIB=180 độ==> DIG+GIB=180 độ

 ==> D;I;B thẳng hàng

    

21 tháng 2 2016

a)fac=amo,emo=fca=90 =>efm=emf=>em=ef

b)*dci+dic+idc+ibc+icb+cib=360 mà dci+icb=90;idc+ibc=90 =>dic+cib=180 =>3 diem thang hang

dci+idc+dic=180;cib+icb+ibc=180

*abi=cung ad/2 mà c ko doi =>d ko doi=>ad ko doi=>abi ko doi

25 tháng 1 2021

I là trung điểm BC nha

 

a: Xét ΔOAE vuông tại A và ΔOBF vuông tại B có

OA=OB

góc AOE chung

Do đó: ΔOAE=ΔOBF

Suy rA: AE=BF

b: Xét ΔIAF vuông tại A và ΔIBE vuông tại B có

AF=BE

\(\widehat{IFA}=\widehat{IEB}\)

Do đó: ΔIAF=ΔIBE

c: Xét ΔOIA và ΔOIB có

OI chung

IA=IB

OA=OB

Do đó: ΔOIA=ΔOIB

Suy ra: \(\widehat{AOI}=\widehat{BOI}\)

hay OI là tia phân giác của góc AOB

18 tháng 1 2018

Sửa đề: Từ M vẽ MA vuông góc với Ox A B C D M O x y t 1 2 a) ΔAOM vuông ở A nên

\(\widehat{AMO}+\widehat{O_1}=90^o\)

\(60^o+\widehat{O_1}=90^o\)

\(\Rightarrow\widehat{O_1}=30^o\)

\(\widehat{O_1}=\widehat{O_2}\) ( Ot là tia phân giác của góc xOy )

=> \(\widehat{O_2}=30^o\)

=> \(\widehat{AOB}=\widehat{O_1}+\widehat{O_2}=30^o+30^o=60^o\) (*)

+) Xét ΔAOM và ΔBOM có:

\(\widehat{OAM}=\widehat{OBM}=90^o\)

\(\widehat{O_1}=\widehat{O_2}=30^o\)

OM là cạnh chung

=> ΔAOM = ΔBOM ( c.h-g.n )

=> OA = OB ( 2 cạnh tương ứng )

=> ΔOAB cân tại O (**)

Từ (*) và (**)

=> \(\widehat{OAB}=\widehat{OBA}=\dfrac{180-60}{2}=60^o\)

Vậy.....

b) ΔOAM vuông ở A ; áp dụng định lí Pi-ta-go ; ta có:

\(AM^2+OA^2=OM^2\)

\(AM^2+12^2=16^2\)

\(AM^2+144=256\)

\(\Rightarrow AM^2=256-144\)

\(\Rightarrow AM^2=112\)

\(\Rightarrow AM=\sqrt{112}\approx11\left(cm\right)\)

Do ΔOAM = ΔOBM ( c/m a)

=> AM = BM = 11 cm ( 2 cạnh tương ứng )

Vậy...