Cho tam giác ABC, các đường cao AD,BE,CF, trực tâm H . Gọi M là trung điềm BC . Qua H kẻ đường thẳng vuông góc với HM, cắt AC tại P . Qua A kẻ đường thẳng vuông góc với AM, cắt BH tại Q . Gọi PQ cắt AD tại I. Chứng minh: MIP =90
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tự kẻ hình nha
a) vì tam giác BEC vuông tại E=> EBC=90 độ-ECB
vì ECB+BCD= 90 độ( AC vuông góc với CD)
=> BCD=90 độ-ECB
xét tam giác HMB và tam giác CMD có
MB=MC(gt)
HMB=DMC(đối đỉnh)
HBM=MCD(= 90 độ-ECB)
=> tam giác HMB= tam giác DMC(gcg)
=> BH=CD (hai cạnh tương ứng)
b) từ tam giác HMB= tam giác DMC=> HM=DM( hai cạnh tương ứng)
=> M là trung điểm của HD
c) hình như nhầm một chút rồi, phải là AM,HO,DI giao nhau
vì M là trung điểm của HD=> AM là trung tuyến
vì O là trung điểm của AD=> HO là trung tuyến
vì I là trung điểm của AH=> DI là trung tuyến
=> AM, HO,DI giao nhau tại một điểm ( trong tam giác, 3 đường trung tuyến giao nhau tại một điểm)
a: Kẻ AN là đường kính của (O)
góc ABN=1/2*180=90 độ
=>BN//CH
góc ACN=1/2*180=90 độ
=>CH//BN
=>BHCN là hình bình hành
=>M là trung điểm của HN
Xét ΔAHN có NM/NH=NO/NA
nên OM//AH và OM=AH/2
=>AH=2OM
c: ΔOKL cân tại O
mà OI là đường cao
nên I là trung điểm của KL
Sửa đề: Từ C,B kẻ các đường thẳng vuông góc với AC,AB cắt nhau tại K
a: CK vuông góc AC
BH vuông góc AC
Do đó: CK//BH
BK vuông góc AB
CH vuông góc AB
Do đó: BK//CH
Xét tứ giác BHCK có
BH//CK
BK//CH
Do đó: BHCK là hình bình hành
b: BHCK là hình bình hành
=>BC cắt HK tại trung điểm của mỗi đường
mà M là trung điểm của BC
nên M là trung điểm của HK
=>H,M,K thẳng hàng
\({}\)
a) Vì \(\widehat{BEC}=\widehat{BFC}=90^o\) nên tứ giác BEFC nội tiếp đường tròn đường kính BC. Tương tự như thế, tứ giác AEDB nội tiếp đường tròn đường kính AB. Cũng có \(\widehat{AEH}=\widehat{AFH}=90^o\) nên tứ giác AEHF nội tiếp đường tròn đường kính AH.
Ta có \(\widehat{IEM}=\widehat{IEB}+\widehat{BEM}\)
\(=\left(90^o-\widehat{IEA}\right)+\widehat{EBC}\)
\(=90^o-\widehat{EAD}+\widehat{EBD}=90^o\) (do \(\widehat{EBD}=\widehat{EAD}\))
Vậy \(IE\perp ME\)
b) Dễ thấy các điểm I, D, E, F, M, K cùng thuộc đường tròn đường kính IM. Gọi J là trung điểm AI thì I chính là tâm của đường tròn (AIK) nên (J) tiếp xúc với (I) tại A. Dẫn đến A nằm trên trục đẳng phương của (I) và (J)
Mặt khác, ta có \(SK.SI=SE.SF\) nên \(P_{S/\left(I\right)}=P_{S/\left(J\right)}\) hay S nằm trên trục đẳng phương của (I) và (J). Suy ra AS là trục đẳng phương của (I) và (J). \(\Rightarrow\)\(AS\perp IJ\) hay AS//BC (đpcm).
c) Ta thấy tứ giác AKEP nội tiếp đường tròn AP
\(\Rightarrow\widehat{APB}=\widehat{MKE}=\widehat{MDE}=\widehat{BAC}\)
\(\Rightarrow\Delta BAE~\Delta BPA\left(g.g\right)\Rightarrow\widehat{BAP}=\widehat{BEA}=90^o\)
\(\Rightarrow\) AP//QH \(\left(\perp AB\right)\)
\(\Rightarrow\widehat{IAP}=\widehat{IHQ}\) (2 góc so le trong)
Từ đó dễ dàng chứng minh \(\Delta IAP=\Delta IHQ\left(g.c.g\right)\) \(\Rightarrow IP=IQ\) hay I là trung điểm PQ (đpcm)
Ta có : AQ // CH ; AP // BH nên Tứ giác AQHP là hình bình hành nên AP = HQ
để C/m CA.AH = CB.AP hay CA.AH = CB.HQ
Ta có : \(\widehat{BHD}=90^o-\widehat{HBD}\); \(\widehat{BCA}=90^o-\widehat{HBD}\)
\(\Rightarrow\widehat{BHD}=\widehat{BCA}\)
Mà \(\widehat{BHD}=\widehat{AHQ}\)( đối đỉnh ) nên \(\widehat{AHQ}=\widehat{BCA}\)
Ta có :
\(\widehat{HAQ}=\widehat{HAC}+\widehat{A_2}=\widehat{HAC}+\widehat{C_1}=180^o-\widehat{AHC}=180^o-\left(90^o+\widehat{A_1}\right)=90^o-\widehat{A_1}\)
Mà \(\widehat{ABC}=90^o-\widehat{A_1}\)
\(\Rightarrow\widehat{ABC}=\widehat{HAQ}\)
Xét \(\Delta ABC\)và \(\Delta HQA\)có :
\(\widehat{ACB}=\widehat{AHQ}\)( cmt ) ; \(\widehat{ABC}=\widehat{HAQ}\)
\(\Rightarrow\Delta ABC\approx\Delta QAH\left(g.g\right)\)
\(\Rightarrow\frac{AC}{BC}=\frac{HQ}{AH}\)hay \(\frac{AC}{BC}=\frac{AP}{AH}\) \(\Rightarrow\)AC.AH = BC.AP
Kẻ CG//MN(G thuộc AB), CG cắt AD tại K
=>HI vuông góc CK
=>I là trựctâm của ΔHCK
=>KI vuông góc CH
=>KI//AB
=>KI//BG
=>K là trung điểm của CG
MN//GC
=>MH/GK=HN/KC
mà GK=KC
nên MH=HN