có bao nhiêu số tự nhiên có 4 chữ số khác nhau lập thành từ các chữ số 0, 1, 2, 3, 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
Chữ số hàng đơn vị có 4 cách chọn (từ 1,3,5,7)
Chọn và hoán vị 4 chữ số từ 6 chữ số còn lại: \(A_6^4\) cách
Tổng cộng: \(4.A_6^4\) cách
2.
Gọi chữ số cần lập có dạng \(\overline{abcd}\)
a.
Lập số có 4 chữ số bất kì (các chữ số đôi một khác nhau): \(A_6^4\) cách
Lập số có 4 chữ số sao cho số 0 đứng đầu: \(A_5^3\) cách
\(\Rightarrow A_6^4-A_5^3=300\) số
b.
Để số được lập là số chẵn \(\Rightarrow\) d chẵn
TH1: \(d=0\Rightarrow abc\) có \(A_5^3\) cách chọn
TH2: \(d\ne0\Rightarrow d\) có 2 cách chọn (từ 2;4)
a có 4 cách chọn (khác 0 và d), b có 4 cách chọn, c có 3 cách chọn
\(\Rightarrow2.4.4.3=96\) số
Tổng cộng: \(A_5^3+96=156\) số
Xác suất \(P=\dfrac{156}{300}=...\)
a: \(\overline{abc}\)
a có 3 cáhc
b có 4 cáhc
c có 4 cách
=>Có 3*4*4=48 cách
b: \(\overline{abcd}\)
a có 3 cách
b có 3 cách
c có 2 cách
d có 1 cách
=>Có 3*3*2=18 cách
c: \(\overline{abc}\)
c có 1 cách
a có 3 cách
b có 4 cách
=>Có 1*3*4=12 cách
d: \(\overline{abcd}\)
TH1: d=0
=>Có 3*4*4=48 cách
TH2: d<>0
d có 2 cách
a có 3 cách
b có 4 cách
c có 4 cách
=>Có 4*4*3*2=16*6=96 cách
=>Có 144 cách
Gọi STN có 3 chữ số là \(\overline {abc} \)
- a có 4 cách ( khác 0).
- b có 4 cách (khác a).
- c có 3 cách (khác a, b).
Vậy có thể lập được 4. 4. 3= 48 số tự nhiên có ba chữ số khác nhau.
Có 7 cách chọn chữ số hàng trăm
Có 6 cách chọn chữ số hàng chục
Có 5 cách chọn chữ số hàng đơn vị
Vậy có tất cả số thoả mãn đề bài là:
7 x 6 x 5 = 210 (số)
Đáp số: 210 số
Có 7 x 6 x 5 = 210 số tự nhiên có 3 chữ số được lập từ các số 1;2;3;4;5;6;7
..........................................,..........................................
a) Mỗi số có 4 chữ số khác nhau lập được từ 6 chữ số đã cho là cách chọn 4 chữ số và sắp xếp chúng, mỗi cách chọn như vậy là một chỉnh hợp chập 4 của 6 phần tử. Do đó, số các số có 4 chữ số khác nhau lập được từ 6 chữ số đã cho là:
\(A_6^4 = 6.5.4.3 = 360\) (số)
b) Việc lập một số có 4 chữ số từ 6 chữ số 0; 1; 2; 3; 4; 5 bao gồm 2 công đoạn
Công đoạn 1: Chọn 1 chữ số khác 0 làm chữ số hàng nghìn, có 5 cách chọn (1; 2; 3; 4 hoặc 5)
Công đoạn 2: Chọn 3 chữ số từ 5 chữ số còn lại (trừ chữ số đã chọn làm chữ số hàng nghìn) và sắp xếp chúng, mỗi cách như vậy là một chỉnh hợp chập 3 của 5 phần tử. Do đó, số cách chọn 3 chữ số từ 5 chữ số còn lại và sắp xếp chúng là:
\(A_5^3 = 5.4.3 = 60\) (cách)
Áp dụng quy tắc nhân, ta có số các số có 4 chữ số khác nhau lập được từ 6 chữ số đã cho là :
\(5.60 = 300\) (số)
đáp án là 61, có phần nào chưa rõ mong mn chỉ bảo em thêm với ạ, lần đầu làm có hơi bỡ ngỡ một chút, khó tránh khỏi sai sót.
TH1: số 2 đứng đầu:
Chọn 2 chữ số từ 6 chữ số còn lại và hoán vị: \(A_6^2=30\) cách
TH2: số 2 không đứng đầu:
Chọn số hàng trăm: có 5 cách (khác 0 và 2)
Chọn 1 chữ số còn lại: 5 cách, hoán vị nó với 2: có \(2!=2\) cách
\(\Rightarrow5.5.2=50\) cách
Tổng cộng: \(30+50=80\) số
Hàng trăm nghìn: 8 cách chọn (trừ số 0)
Hàng chục nghìn: 8 cách chọn (trừ hàng trăm nghìn)
Hàng nghìn: 7 cách chọn (trừ hàng trăm nghìn, chục nghìn)
Hàng trăm: 6 cách chọn (trừ hàng trăm nghìn, chục nghìn, nghìn)
Hàng chục: 5 cách chọn (trừ hàng trăm nghìn, chục nghìn, nghìn, trăm)
Hàng đơn vị: 4 cách chọn (từ hàng trăm nghìn, chục nghìn, nghìn, trăm, chục)
=> Số lượng số tự nhiên có 6 chữ số khác nhau lập từ các số 0,1,2,3,4,5,6,7,8 là:
8 x 8 x 7 x 6 x 5 x 4 = 47 040 (số)
Đ.số: 47 040 số
Gọi số cần lập là \(\overline{abcd}\)
a có 4 cách chọn (khác 0), b có 4 cách chọn (khác a), c có 3 cách chọn (khác a,b), d có 2 cách chọn
\(\Rightarrow\) Có \(4.4.3.2=96\) số