1/2.3+1/3.4+1/4.5+1/5.6+1/6.7+... +1/2022.2023+1/2023.2023
Giải nhanh giúp e với ạ. E sắp thi rồi. Ai giải được e xin cảm ơn ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9
A=1/3-1/9
A=2/9
các câu 2;3 còn lại giống câu 1 bạn nhé
bạn thay số vào rồi làm tương tự
\(=\dfrac{2-1}{1.2}+\dfrac{3-2}{2.3}+\dfrac{4-3}{3.4}+\dfrac{5-4}{4.5}+\dfrac{6-5}{5.6}+\dfrac{7-6}{6.7}+\dfrac{8-7}{7.8}+\dfrac{9-8}{8.9}+\dfrac{10-9}{9.10}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\\ =1-\dfrac{1}{10}\\ =\dfrac{10-1}{10}=\dfrac{9}{10}\)
1/1.2+1/2.3+1/3.4+1/4.5+1/5.6+1/6.7+1/7.8+1/8.9+1/9.10
=2-1/1.2+3-2/2.3+4-3/3.4+...+10-9/9.10
=1-1/2+1/2-1/3+1/3-1/4+....+1/9-1/10
=1-1/10
=9/10
ĐKXĐ: \(x\notin\left\{0;-9\right\}\)
Ta có: \(\dfrac{1}{x+9}-\dfrac{1}{x}=\dfrac{1}{5}+\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{20x}{20x\left(x+9\right)}-\dfrac{20\left(x+9\right)}{20x\left(x+9\right)}=\dfrac{4x\left(x+9\right)+5x\left(x+9\right)}{20x\left(x+9\right)}\)
Suy ra: \(4x^2+36x+5x^2+45x=20x-20x-180\)
\(\Leftrightarrow9x^2+81x+180=0\)
\(\Leftrightarrow x^2+9x+20=0\)
\(\Leftrightarrow x^2+4x+5x+20=0\)
\(\Leftrightarrow x\left(x+4\right)+5\left(x+4\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\left(nhận\right)\\x=-5\left(nhận\right)\end{matrix}\right.\)
Vậy: S={-4;-5}
\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{200.201}\)
=\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{200}-\frac{1}{201}\)
=\(\frac{1}{2}-\frac{1}{201}\)
=\(\frac{199}{402}\)
\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{200.201}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{200}-\frac{1}{201}\)
\(=\frac{1}{2}-\frac{1}{201}=\frac{199}{402}\)
a)=\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{2}-\frac{1}{100}\)
\(=\frac{49}{100}\)
b)\(=\frac{201.204+1}{\left(201+2\right).204-407}\)
\(=\frac{201.204+1}{201.204+2.204-407}\)
\(=\frac{201.204+1}{201.204+1}\)
=1
\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{98.99}+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+.....+\dfrac{1}{2022}-\dfrac{1}{2023}+\dfrac{1}{2023}-\dfrac{1}{2023}\)
1 -- \(\dfrac{1}{2023}\)
1 + \(\dfrac{1}{2023}\)
\(\dfrac{2023+1}{2023}=\dfrac{2024}{2023}\)
Sai ko chịu trách nhiệm
1/2.3+1/3.4+1/4.5+...+1/2022.2023 + 1/2023.2023
= 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 +...+ 1/2022 + 1/2023 + 1/2023
= 1/2 - 0
= 1/2