: Cho tam giác ABC vuông ở A (AB< AC). Về phía ngoài tam giác ABC vẽ các tam giác ADB và AEC vuông cân tại A. a) cm: BC = DE b) Cm: DB // EC c) Kẻ đường cao AH của tam giác ABC cắt DE tại M. Vẽ đường thẳng qua A vuông góc với MC cắt tia CB tại N. Chứng minh CA vuông góc với MN. d) chứng minh DE = 2AM
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta ABC\)và\(\Delta ADE\):
AB=AD(gt)
\(\widehat{BAC}=\widehat{DAE}=90^o\)
AC=AE(gt)
=> \(\Delta ABC=\Delta ADE\left(c-g-c\right)\)
=> BC=DE ( 2 cạnh tương ứng)
=> Đpcm
b) Ta có \(\Delta ABD\)vuông cân tại A
=> \(\widehat{ABD}=\widehat{ADB}=\frac{\widehat{DAB}}{2}=\frac{90^o}{2}=45^o\)
\(\Delta AEC\)vuông cân tại A
=> \(\widehat{AEC}=\widehat{ACE}=\frac{\widehat{EAC}}{2}=\frac{90^o}{2}=45^o\)
=> \(\widehat{BDA}=\widehat{ECA}=45^o\)
Mà 2 góc này ở vị trí so le trong
=> BD//CE
=> Đpcm
c) Sửa đề: Kẻ dường cao AH của tam giác ABC cắt DE tại M. Vẽ đường thẳng qua A và vuông góc với MC cắt BC tại N. Chứng minh rằng CA vuông góc với NM
Gọi giao điể của NA và MC là I
Xét \(\Delta NMC\)có:
\(\hept{\begin{cases}NI\perp MC\\MH\perp NC\end{cases}}\)
Mà 2 đường cao này cắt nhau tại A
=> A là trực tâm của \(\Delta MNC\)
=> \(CA\perp NM\)
=> Đpcm
d) Ta có: \(\widehat{ADM}=\widehat{ABC}\left(\Delta ADE=\Delta ABC\right)\)
=> \(\widehat{ADM}+\widehat{AED}=\widehat{ABC}+\widehat{BAH}=90^o\)
=> \(\widehat{AED}=\widehat{BAH}\) Mà \(\widehat{BAH}=\widehat{MAE}\left(đđ\right)\)
=> \(\widehat{AED}=\widehat{MAE}\)
=> \(\Delta MAE\)cân tại M
=> MA=ME (1)
Lại có: \(\widehat{AED}=\widehat{ACB}\Rightarrow\widehat{AED}+\widehat{ADE}=\widehat{ACB}+\widehat{CAH}=90^o\)
=> \(\widehat{ADE}=\widehat{CAH}\)
Mà \(\widehat{CAH}=\widehat{DAM}\left(đđ\right)\)
=> \(\widehat{ADE}=\widehat{DAM}\)
=> \(\Delta DAM\)cân tại M
=> MD=MA (2)
Từ (1) và (2)
=> MA=MD=ME
=> \(MA=\frac{1}{2}DE\)
=> Đpcm
P/s: Thật ra định làm tắt cho bạn tự suy luận, nhưng sợ bạn ko hiểu nên thoi, mỏi cả tay:>>>
a) Do ∆ADB vuông cân tại A (gt)
⇒ AB = AD
Do ∆AEC vuông cân tại A (gt)
⇒ AE = AC
Xét hai tam giác vuông: ∆ABC và ∆ADE có:
AB = AD (cmt)
AC = AE (cmt)
∆ABC = ∆ADE (hai cạnh góc vuông)
⇒ BC = DE (hai cạnh tương ứng)
b) Do ∆ADE vuông cân tại A (gt)
⇒ ∠ADB = ∠ABD = 45⁰
Do ∆AEC vuông cân tại A (gt)
⇒ ∠ACE = ∠AEC = 45⁰
⇒ ∠ACE = ∠ADB = 45⁰
Mà ∠ACE và ∠ADB là hai góc so le trong
⇒ DB // EC
c) Do AH ⊥ BC (gt)
⇒ MH ⊥ CN
Do AF ⊥ MC (gt)
⇒ NF ⊥ MC
∆CMN có:
MH ⊥ CN (cmt)
NF ⊥ MC (cmt)
⇒ MH và NF là hai đường cao của ∆CMN
Mà MH cắt NF tại A
⇒ CA là đường cao thứ ba của ∆CMN
⇒ CA ⊥ MN
d) Em xem lại đề nhé