Các bạn giúp mik 1 câu cux đc ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xet ΔABC có AD/AB=AE/AC
nên DE//CB
b: DE//BC
AH vuông góc BC
=>AH vuông góc DE
ΔADE cân tại A
mà AH là đường cao
nên AH là trung trực của DE
c: ΔCBA đều
mà BF là trung tuyến
nên BF vuông góc AC
Câu 3:
a: \(BD=\sqrt{BC^2-DC^2}=4\left(cm\right)\)
b: \(\widehat{A}=180^0-2\cdot70^0=40^0< \widehat{B}\)
nên BC<AC=AB
c: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có
BC chung
\(\widehat{EBC}=\widehat{DCB}\)
Do đó:ΔEBC=ΔDCB
d: Xét ΔOBC có \(\widehat{OBC}=\widehat{OCB}\)
nên ΔOBC cân tại O
Câu 2
a) Thay y = -2 vào biểu thức đã cho ta được:
2.(-2) + 3 = -1
Vậy giá trị của biểu thức đã cho tại y = -2 là -1
b) Thay x = -5 vào biểu thức đã cho ta được:
2.[(-5)² - 5] = 2.(25 - 5) = 2.20 = 40
Vậy giá trị của biểu thức đã cho tại x = -5 là 40
Xét tam giác ABC có: góc A+góc B+góc C=180o
=>Góc B+góc C=180o-góc A=180o-60o=120o
Tổng tia phân giác của góc B và góc C là (góc B)/2+(góc C)/2
=(góc B+góc C)/2=120o/2=60o=>góc IBC+góc ICB=60o
Xét tam giác BIC có: góc IBC+góc ICB+góc BIC=180o
=>Góc BIC=180o-(góc IBC+góc ICB)=180o-60o=120o
Vậy góc BIC=60o
9.
a, \(x^4-x^3-14x^2+x+1=0\)
\(< =>x^4+3x^3-x^2-4x^3-12x^2+4x-x^2-3x+1=0\)
\(< =>x^2\left(x^2+3x-1\right)-4x\left(x^2+3x-1\right)-\left(x^2+3x-1\right)=0\)
\(< =>\left(x^2-4x-1\right)\left(x^2+3x-1\right)=0\)
\(=>\left[{}\begin{matrix}x^2-4x-1=0\left(1\right)\\x^2+3x-1=0\left(2\right)\end{matrix}\right.\)
giải pt(1) \(=>x^2-4x+4-5=0< =>\left(x-2\right)^2-\sqrt{5}^2=0\)
\(=>\left(x-2-\sqrt{5}\right)\left(x-2+\sqrt{5}\right)=0\)
\(=>\left[{}\begin{matrix}x=2+\sqrt{5}\\x=2-\sqrt{5}\end{matrix}\right.\)
giải pt(2) \(\)\(=>x^2+3x-1=0< =>x^2+2.\dfrac{3}{2}x+\dfrac{9}{4}-\dfrac{13}{4}=0\)
\(< =>\left(x+\dfrac{3}{2}\right)^2-\left(\dfrac{\sqrt{13}}{2}\right)^2=0\)
\(=>\left(x+\dfrac{3}{2}+\dfrac{\sqrt{13}}{2}\right)\left(x+\dfrac{3}{2}-\dfrac{\sqrt{13}}{2}\right)=0\)
tương tự cái pt(1) ra nghiệm rồi kết luận
b, đặt \(\sqrt{x^2+1}=a\left(a\ge1\right)=>x^2+1=a^2\)
\(=>x^4=\left(a^2-1\right)^2\)
\(=>pt\) \(\left(a^2-1\right)^2+a^2.a-1=0\)
\(=>a^4-2a^2+1+a^3-1=0\)
\(< =>a^4-2a^2+a^3=0< =>a^2\left(a+2\right)\left(a-1\right)=0\)
\(->\left[{}\begin{matrix}a=0\left(ktm\right)\\a=-2\left(ktm\right)\\a=1\left(tm\right)\end{matrix}\right.\)rồi thế a vào \(\sqrt{x^2+1}\)
\(=>x=0\)
chủ ngữ they thì bỏ cũng được không bỏ cũng không sao =))
a.
\(2x^3-1=15\)
\(\Rightarrow2x^3=16\)
\(\Rightarrow x^3=8\)
\(\Rightarrow x=2\)
\(\Rightarrow\dfrac{x+16}{9}=\dfrac{2+16}{9}=2\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{y-25}{16}=2\\\dfrac{z+9}{16}=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y-25=32\\z+9=32\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y=57\\z=23\\\end{matrix}\right.\)
\(\Rightarrow x+y+z=2+57+23=82\)
b.
\(\dfrac{\overline{ab}}{\overline{bc}}=\dfrac{b}{c}\Leftrightarrow\dfrac{10a+b}{10b+c}=\dfrac{b}{c}\)
\(\Leftrightarrow\dfrac{10a+b}{10b+c}=\dfrac{b}{c}=\dfrac{10a+b-b}{10b+c-c}=\dfrac{10a}{10b}=\dfrac{a}{b}\)
\(\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}\Rightarrow\dfrac{a}{b}.\dfrac{b}{c}=\left(\dfrac{a}{b}\right)^2=\left(\dfrac{b}{c}\right)^2\)
\(\Rightarrow\dfrac{a}{c}=\dfrac{a^2}{b^2}=\dfrac{b^2}{c^2}=\dfrac{a^2+b^2}{b^2+c^2}\) (đpcm)