K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2017

\(\frac{32\times\left(1+\sqrt{5}\right)}{3\times\left(3-\sqrt{5}\right)}=\frac{32\cdot\left(1+\sqrt{5}\right)\cdot\left(3+\sqrt{5}\right)}{3\cdot\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}\)

                                   = \(\frac{32\cdot\left(8+4\sqrt{5}\right)}{3\cdot4}\)

                                  \(=\frac{32\left(2+\sqrt{5}\right)}{3}\)

mình chỉ ra được đến thế thôi

23 tháng 9 2017

thank . Nhưng kết quả bằng 2 bạn ak

Y
13 tháng 6 2019

2.+ \(\left(2n+1\right)^2=4n^2+4n+1>4n^2+4n\)

\(\Rightarrow2n+1>\sqrt{4n\left(n+1\right)}=2\sqrt{n\left(n+1\right)}\)

+ \(\frac{1}{\left(2n+1\right)\left(\sqrt{n}+\sqrt{n+1}\right)}=\frac{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}{\left(2n+1\right)\left(\sqrt{n+1}+\sqrt{n}\right)}\)

\(=\frac{\sqrt{n+1}-\sqrt{n}}{2n+1}< \frac{\sqrt{n+1}-\sqrt{n}}{2\sqrt{n\left(n+1\right)}}=\frac{1}{2}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

Do đó : \(A< \frac{1}{2}\left(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{48}}-\frac{1}{\sqrt{49}}\right)\)

\(\Rightarrow A< \frac{1}{2}\)

Y
13 tháng 6 2019

1. + \(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\left(n+1\right)-n}{\left(n+1\right)\sqrt{n}}=\frac{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}{\left(n+1\right)\sqrt{n}}\)

\(< \frac{\left(\sqrt{n+1}-\sqrt{n}\right)\cdot2\sqrt{n+1}}{\sqrt{n}\left(n+1\right)}=2\cdot\frac{n+1-\sqrt{n\left(n+1\right)}}{\left(n+1\right)\sqrt{n}}=2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

Do đó : \(A< 2\left(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2012}}-\frac{1}{\sqrt{2013}}\right)\)

\(\Rightarrow A< 2\)

Bài 2 tạm thời chưa nghĩ ra :))

13 tháng 6 2019

Đặt B là tên biểu thức

Với mọi n thuộc N*, ta có: 

\(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{n\left(n+1\right)}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)=\sqrt{n}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

\(=\left(1+\frac{\sqrt{n}}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)< 2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\) (*)

Áp dụng (*), ta được: 

\(B< 2\left(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{4}}+...+\frac{1}{\sqrt{2011}}-\frac{1}{\sqrt{2012}}+\frac{1}{\sqrt{2012}}-\frac{1}{\sqrt{2013}}\right)\)

\(=2\left(1-\frac{1}{\sqrt{2013}}\right)=2-\frac{1}{\sqrt{2013}}< 2\)

Bài 2:

Ta có: \(B=\frac{\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}}{\sqrt{\sqrt{5}+1}}-\sqrt{3-2\sqrt{2}}\)

\(=\frac{\sqrt{\sqrt{5}-1}\left(\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}\right)}{2}-\sqrt{2-2\cdot\sqrt{2}\cdot1+1}\)

\(=\frac{\sqrt{3+\sqrt{5}}+\sqrt{7-3\sqrt{5}}}{2}-\sqrt{\left(\sqrt{2}-1\right)^2}\)

\(=\frac{\sqrt{6+2\sqrt{5}}+\sqrt{14-6\sqrt{5}}}{2\sqrt{2}}-\left(\sqrt{2}-1\right)\)

\(=\frac{\sqrt{5}+1+3-\sqrt{5}}{2\sqrt{2}}-\sqrt{2}+1\)

\(=\frac{4}{2\sqrt{2}}-\sqrt{2}+1\)

\(=\sqrt{2}-\sqrt{2}+1\)

=1

23 tháng 7 2020

câu 3: C = \(\frac{\sqrt{3-\sqrt{5}}\left(\sqrt{10}-\sqrt{2}\right)\left(3+\sqrt{5}\right)}{\left(\text{4+\sqrt{15}}\right)\left(\sqrt{10-\sqrt{6}}\right)\sqrt{4-\sqrt{15}}}\)

\(=\frac{\sqrt{3-\sqrt{5}}\left(\sqrt{10}-\sqrt{2}\right)\sqrt{3+\sqrt{5}}.\sqrt{3+\sqrt{5}}}{\sqrt{4+\sqrt{15}}.\sqrt{4+\sqrt{15}}\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}}\)

=\(\frac{\sqrt{9-\left(\sqrt{5}\right)^2}\left(\sqrt{10}-\sqrt{2}\right)\sqrt{3+\sqrt{5}}}{\sqrt{16-\left(\sqrt{15}\right)^2}.\left(\sqrt{10}-\sqrt{6}\right).\sqrt{4+\sqrt{15}}}\)

\(=\frac{2\left(\sqrt{30+10\sqrt{5}}-\sqrt{6+2\sqrt{5}}\right)}{\sqrt{40+10\sqrt{15}}-\sqrt{24-6\sqrt{15}}}\)

\(=2.\frac{\left(\sqrt{5}+5\right)-\left(\sqrt{5}+1\right)}{\left(\sqrt{15}+5\right)-\left(\sqrt{15}+3\right)}\)

= 4

7 tháng 8 2017

\(\left(3\sqrt{2}+\sqrt{6}\right)\left(6-3\sqrt{3}\right)\)

\(=\sqrt{6}\left(\sqrt{3}+1\right)\times3\left(2-\sqrt{3}\right)\)

\(=\dfrac{3\sqrt{6}}{2}\left(\sqrt{3}+1\right)\left(4-2\sqrt{3}\right)\)

\(=\dfrac{3\sqrt{6}}{2}\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)^2\)

\(=\dfrac{3\sqrt{6}}{2}\left(3-1\right)\left(\sqrt{3}-1\right)\)

\(=3\sqrt{6}\left(\sqrt{3}-1\right)\)

https://hoc24.vn/hoi-dap/question/405366.html

\(\sqrt{4-\sqrt{15}}\left(\sqrt{10}-\sqrt{6}\right)\left(4+\sqrt{15}\right)\)

\(=\sqrt{\left(4+\sqrt{15}\right)^2\left(4-\sqrt{15}\right)}\times\sqrt{2}\left(\sqrt{5}-\sqrt{3}\right)\)

\(=\sqrt{\left(4+\sqrt{15}\right)\left(16-15\right)}\times\sqrt{2}\left(\sqrt{5}-\sqrt{3}\right)\)

\(=\sqrt{8+2\sqrt{15}}\left(\sqrt{5}-\sqrt{3}\right)\)

\(=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}\left(\sqrt{5}-\sqrt{3}\right)\)

= 5 - 3

= 2

24 tháng 8 2023

a) \(\left(2-\sqrt{3}\right)\cdot\left(2+\sqrt{3}\right)\)

\(=2^2-\left(\sqrt{3}\right)^2\)

\(=4-3=1\)

b) \(\left(2\sqrt{3}-\sqrt{5}\right)\left(2\sqrt{3}+\sqrt{5}\right)\)

\(=\left(2\sqrt{3}\right)^2-\left(\sqrt{5}\right)^2\)

\(=12-5=7\)

24 tháng 8 2023

a) (2 - √3)(2 + √3)

= 2² - (√3)²

= 4 - 3

= 1

b) (2√3 - √5)(2√3 + √5)

= (2√3)² - (√5)²

= 12 - 5

= 7

 

11 tháng 12 2019

a) 12. \(\frac{4}{9}\)+\(\frac{4}{3}\)=\(\frac{16}{3}\)+\(\frac{4}{3}\)=\(\frac{20}{3}\)

b) (\(\frac{-5}{7}\)) . (12,5+1,5)= (\(\frac{-5}{7}\)).14=-10

a) \(12.\left(-\frac{2}{3}\right)^2+\frac{4}{3}=12.\frac{4}{9}+\frac{4}{3}=\frac{16}{3}+\frac{4}{3}=\frac{20}{3}\)

b) \(12,5.\left(-\frac{5}{7}\right)+1,5.\left(-\frac{5}{7}\right)=-\frac{5}{7}.\left(12,5+1,5\right)=-\frac{5}{7}.14=-10\)

c) \(1:\left(\frac{2}{3}-\frac{3}{4}\right)^2=1:\left(-\frac{1}{12}\right)^2=1:\frac{1}{144}=1.144=144\)

d) \(15.\left(-\frac{2}{3}\right)^2-\frac{7}{3}=15.\frac{4}{9}-\frac{7}{3}=\frac{20}{3}-\frac{7}{3}=\frac{13}{3}\)

e) \(\frac{1}{2}\sqrt{64}-\sqrt{\frac{4}{25}}+\left(-1\right)^{2007}=\frac{1}{2}.8-\frac{2}{5}+\left(-1\right)=4-\frac{2}{5}-1=\frac{13}{5}\)