Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
pt x^2+4x+m=0
tìm m để pt có 2 nghiệm phân biệt x1 và x2 thỏa mãn x1^2+x2^2=6x1x2
\(\text{Δ}=4^2-4\cdot1\cdot m=-4m+16\)
Để phương trình có hai nghiệm phân biệt thì Δ>0
=>-4m+16>0
=>-4m>-16
=>m<4
Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=-4\\x_1x_2=\dfrac{c}{a}=m\end{matrix}\right.\)
\(x_1^2+x_2^2=6x_1x_2\)
=>\(\left(x_1+x_2\right)^2-8x_1x_2=0\)
=>\(\left(-4\right)^2-8m=0\)
=>16-8m=0
=>8m=16
=>m=2(nhận)
\(\text{Δ}=4^2-4\cdot1\cdot m=-4m+16\)
Để phương trình có hai nghiệm phân biệt thì Δ>0
=>-4m+16>0
=>-4m>-16
=>m<4
Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=-4\\x_1x_2=\dfrac{c}{a}=m\end{matrix}\right.\)
\(x_1^2+x_2^2=6x_1x_2\)
=>\(\left(x_1+x_2\right)^2-8x_1x_2=0\)
=>\(\left(-4\right)^2-8m=0\)
=>16-8m=0
=>8m=16
=>m=2(nhận)