1)Phân tích thành nhân tử
a)\(7x^2-14+7\)
b)2\(\left(x+y\right)^2+5xy\)
c)abc+ab+bc+ca+a+b+c+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=y\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(y-1\right)\)
b: \(=\left(x^2y^2-8-1\right)\left(x^2y^2-8+1\right)\)
\(=\left(x^2y^2-9\right)\left(x^2y^2-7\right)\)
\(=\left(xy-3\right)\left(xy+3\right)\left(x^2y^2-7\right)\)
c: \(=x^2-8x+x-8\)
\(=x\left(x-8\right)+\left(x-8\right)\)
\(=\left(x-8\right)\left(x+1\right)\)
\(a,xy+y^2-x-y\)
\(=\left(xy+y^2\right)-\left(x+y\right)\)
\(=y\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(y-1\right)\)
\(---\)
\(b,\left(x^2y^2-8\right)^2-1\)
\(=\left(x^2y^2-8-1\right)\left(x^2y^2-8+1\right)\)
\(=\left[\left(xy\right)^2-9\right]\left(x^2y^2-7\right)\)
\(=\left(xy-3\right)\left(xy+3\right)\left(x^2y^2-7\right)\)
\(---\)
\(c,x^2-7x-8\)
\(=x^2+x-8x-8\)
\(=\left(x^2+x\right)-\left(8x+8\right)\)
\(=x\left(x+1\right)-8\left(x+1\right)\)
\(=\left(x+1\right)\left(x-8\right)\)
\(Toru\)
A=8abc+4(ab+bc+ca)+2(a+b+c)+1�=8���+4(��+��+��)+2(�+�+�)+1
A = 8abc + 4ab + 4bc + 4ca + 2a + 2b + 2c + 1
A=(8abc+4ab)+(4bc+2b)+(4ca+2a)+(2c+1)�=(8���+4��)+(4��+2�)+(4��+2�)+(2�+1)
A=4ab(2c+1)+2b(2c+1)+2a(2c+1)+(2c+1)�=4��(2�+1)+2�(2�+1)+2�(2�+1)+(2�+1)
A=(2c+1)(4ab+2a+2b+1)�=(2�+1)(4��+2�+2�+1)
A=(2c+1)[2a(2b+1)+(2b+1)]�=(2�+1)[2�(2�+1)+(2�+1)]
A=(2a+1)(2b+1)(2c+1)
a. 12xy2 - 8x2y = 4xy . (3y - 2x)
b. 3x + 3y - x2 - xy = (3x + 3y) - (x2 + xy) = 3 . (x + y) - x . (x + y) = (x + y)(3 - x)
Bài 1:
\(a,2x^2y\left(2x^2y^2-xy^2\right)\\ =2x^2x^2y^2y-2x^2x.y^2.y=2x^4y^3-2x^3y^3\\ b,\left(x-1\right)\left(2x+3\right)\\ =x.2x+x.3-1.2x-1.3=2x^2+3x-2x-3\\ =2x^2+x-3\\ c,\left(20x^3y^4+10x^2y^3-5xy\right):5xy\\ =20x^3y^4:5xy+10x^2y^3:5xy-5xy:5xy\\ =\left(20:5\right).\left(x^3:x\right).\left(y^4:y\right)+\left(10:5\right).\left(x^2:x\right).\left(y^3:y\right)-\left(5:5\right).\left(x:x\right).\left(y:y\right)\\ =4x^2y^3+2xy^2-1\\ d,\left(y-3x\right)^2-\left(y^2-6xy\right)\\ =\left[y^2-2.y.3x+\left(3x\right)^2\right]-\left(y^2-6xy\right)\\ =y^2-6xy+9x^2-y^2+6xy =9x^2\)
Bài 2:
\(a,4xy+4xz=4x\left(y+z\right)\\ b,x^2-y^2+9-6x\\ =\left(x^2-6x+9\right)-y^2\\ =\left(x-3\right)^2-y^2\\ =\left(x-3-y\right)\left(x-3+y\right)\)
Bài 3:
\(a,\dfrac{3xy}{y+z}+\dfrac{3xz}{y+z}\\=\dfrac{3xy+3xz}{y+z}\\ =\dfrac{3x\left(y+z\right)}{\left(y+z\right)}=3x\left(Với:y\ne-z\right)\\ b,\dfrac{x}{x+2}-\dfrac{x}{x-2}\\ =\dfrac{x\left(x-2\right)-x\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}\\ =\dfrac{x^2-2x-x^2-2x}{\left(x+2\right)\left(x-2\right)}=0\)
a) Để phân tích thành nhân tử, ta cần tìm hai số a và b sao cho a * b = 2x^2 + 5xy + 2y^2. Ta có thể thử các cặp số a và b để tìm ra kết quả. 2x^2 + 5xy + 2y^2 = (2x + y)(x + 2y) Vậy phân tích thành nhân tử của 2x^2 + 5xy + 2y^2 là (2x + y)(x + 2y). b) Để phân tích thành nhân tử, ta cần tìm hai số a và b sao cho a * b = x^2 - 2x - 14. Ta có thể thử các cặp số a và b để tìm ra kết quả. x^2 - 2x - 14 = (x - 7)(x + 2) Vậy phân tích thành nhân tử của x^2 - 2x - 14 là (x - 7)(x + 2). c) Để phân tích thành nhân tử, ta cần tìm hai số a và b sao cho a * b = 15x^2 + 7x - 2. Ta có thể thử các cặp số a và b để tìm ra kết quả. 15x^2 + 7x - 2 không thể phân tích thành nhân tử sử dụng các số nguyên.
a: =2x^2+xy+4xy+2y^2
=x(2x+y)+2y(2x+y)
=(x+2y)(2x+y)
c: =15x^2+10x-3x-2
=5x(3x+2)-(3x+2)
=(3x+2)(5x-1)
b: =x^2-2x+1-15
=(x-1)^2-15
\(=\left(x-1-\sqrt{15}\right)\left(x-1+\sqrt{15}\right)\)
a) 5x2 - 5xy + 7y - 7x = ( 5x2 - 5xy ) - ( 7x - 7y ) = 5x( x - y ) - 7( x - y ) = ( x - y )( 5x - 7 )
b) x2 - y2 + 2x + 1 = ( x2 + 2x + 1 ) - y2 = ( x + 1 )2 - y2 = ( x - y + 1 )( x + y + 1 )
c) 3x2 + 6xy + 3y2 - 3z2 = 3( x2 + 2xy + y2 - z2 ) = 3[ ( x2 + 2xy + y2 ) - z2 ] = 3[ ( x + y )2 - z2 ] = 3( x + y - z )( x + y + z )
d) ab( x2 + y2 ) + xy( a2 + b2 ) = abx2 + aby2 + a2xy + b2xy
= ( a2xy + abx2 ) + ( aby2 + b2xy )
= ax( ay + bx ) + by( ay + bx )
= ( ay + bx )( ax + by )
#)Giải :
a)\(ab\left(b-a\right)+bc\left(b-c\right)+ca\left(c-a\right)\)
\(=a\left(a-b\right)+b^2c-bc^2+ac^2-a^2c\)
\(=ab\left(a-b\right)-\left(a-b\right)\left(a+b\right)c+c^2\left(a-b\right)\)
\(=\left(ab-ac-bc+c^2\right)\left(a-b\right)\)
\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\)
b) \(a^2\left(b-c\right)-b^2\left(c-a\right)+c^2\left(a-b\right)\)
\(=a^2\left(b-c\right)-b^2\left[\left(b-c\right)+\left(a-b\right)\right]+c^2\left(a-b\right)\)
\(=a^2\left(b-c\right)-b^2\left(b-c\right)-b^2\left(a-b\right)+c^2\left(a-b\right)\)
\(=\left(a^2-b^2\right)\left(b-c\right)-\left(b^2-c^2\right)\left(a-b\right)\)
\(=\left(a-b\right)\left(a+b\right)\left(b-c\right)-\left(b-c\right)\left(b+c\right)\left(a-b\right)\)
\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\)
a) \(7x^2-14+7\)
\(=7x^2-7.2+7\)
\(=7\left(x^2-2+1\right)\)