K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2017

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Gọi d là khoảng cách từ E đến mặt phẳng (SAB)

Ta có:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Kết hợp với kết quả trong câu a)

ta suy ra Giải sách bài tập Toán 12 | Giải sbt Toán 12

20 tháng 5 2017

Khối đa diện

Khối đa diện

20 tháng 4 2021

Kẻ MK vuông góc AC

\(\left\{{}\begin{matrix}MK\perp AC\subset\left(SAC\right)\\MK\perp SA\subset\left(SAC\right)\end{matrix}\right.\Rightarrow MK\perp\left(SAC\right)\)

\(\Rightarrow d\left(M,\left(SAC\right)\right)=KM=\dfrac{1}{2}AB=\dfrac{1}{2}\sqrt{16a^2-4a^2}=a\sqrt{3}\)

20 tháng 6 2019

24 tháng 3 2017

9 tháng 10 2019

Đáp án C

 

19 tháng 9 2019

 

Đáp án D

Phương pháp:

- Gọi H là trực tâm tam giác, chứng minh S H ⊥ A B C bằng cách sử dụng định lý: “Đường thẳng vuông góc với hai đường thẳng cắt nhau thì nó vuông góc với mặt phẳng chứa hai đường thẳng đó”.

- Tính độ dài SH bằng cách sử dụng hệ thức lượng giữa cạnh và đường cao trong tam giác vuông.

Cách giải: Gọi H là trực tâm của tam giác ABC.

Ta sẽ chứng minh SH là đường cao của hình chóp.

Gọi E, D lần lượt là hình chiếu của B,A lên AC,BC.

Chú ý khi gii: Từ nay về sau, các em có thể ghi nhớ hệ thức liên hệ giữa đường cao và cạnh trong hình chóp S.ABC mà có SA, SB, SC đôi một vuông góc, đó là  1 S H 2 = 1 S A 2 1 S B 2 + 1 S C 2

 

15 tháng 7 2018