hình thang cân ABCD có AB song song vớiCD,AB<CD.kẻ các đường cao AH,BK
Chứng minh rằng DH=CK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAKD vuông tại K và ΔBHC vuông tại H có
AD=BC
góc D=góc C
=>ΔAKD=ΔBHC
=>CH=DK
Xét tứ giác ABHK có
AB//HK
AK//HB
=>ABHK là hình bình hành
=>AB=HK
b: KH=AB=7cm
=>DK+HC=13-7=6cm
=>DK=HC=6/2=3cm
\(BH=\sqrt{13^2-3^2}=\sqrt{160}=4\sqrt{10}\left(cm\right)\)
\(S_{ABCD}=\dfrac{1}{2}\cdot BH\cdot\left(AB+CD\right)\)
\(=\dfrac{1}{2}\cdot4\sqrt{10}\left(7+13\right)=40\sqrt{10}\left(cm^2\right)\)
Xét tam giác ABC và tam giác BKC có :
góc AHD = góc AKC = 90 độ ( gt )
AD = BC ( gt )
góc D = góc C ( gt )
=> tam giác ABC = tam giác BKC ( ch - gn )
=> DH = CK
Xét \(\Delta ABC\)và \(\Delta BKC\)có:
\(\widehat{AHD}=\widehat{AKC}=90\)gt
\(AD=BC\)gt
\(\widehat{D}=\widehat{C}\)gt
\(\Rightarrow\Delta AHD=\Delta BKC\)cạnh huyền-góc nhọn
\(\Rightarrow DH=CK\)