K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2017

Cai dau tien a^2 +a-6= a(a+1)-6=(a+1)*(a-6)

31 tháng 10 2015

BÀI 2 a, x2+x+1=(x2+1/2*2*x+1/4)-1/4+1=(x+1/2)2 +3/4

MÀ (x+1/2)2>=0 với mọi giá trị của x .Dấu"=" xảy ra khi x+1/2=0 =>x=-1/2

    =>(x+1/2)2+3/4>=3/4 với mọi giá trị của x .Dấu "=" xảy ra khi x=-1/2

   =>x2+x+1 có giá trị nhỏ nhất là 3/4 khi x=-1/2

   b,A=y(y+1)(y+2)(y+3)

=>A =[y(y+3)] [(y+1)(y+2)]

  =>A=(y2+3y) (y2+3y+2)

Đặt X=y2+3y+1

=>A=(X+1)(X-1)

=>A=X2-1

=>A=(y2+3y+1)2-1

MÀ (y2+3y+1)2>=0 với mọi giá trị của y

=>(y2+3y+1)2-1>=-1

Vậy GTNN của Alà -1

c,B=x3+y3+z3-3xyz

=>B=(x3+y3)+z3-3xyz

=>B=(x+y)3-3xy(x+y)+z3-3xyz

=>B=[(x+y)3+z3]-3xy(x+y+z)

=>B=(x+y+z)(x2+2xy+y2-xz-yz+z2)-3xy(x+y+z)

=>B=(x+y+z)(x2+2xy+y2-xz-yz+z2-3xy)

=>B=(x+y+z)(x2+y2+z2-xy-xz-yz)

25 tháng 10 2023

a: \(a^2+6ab+9b^2-1\)

\(=\left(a+3b\right)^2-1^2\)

\(=\left(a+3b+1\right)\left(a+3b-1\right)\)

b: \(4x^2-25+\left(2x+7\right)\left(5-2x\right)\)

\(=\left(2x-5\right)\left(2x+5\right)-\left(2x+7\right)\left(2x-5\right)\)

\(=\left(2x-5\right)\left(2x+5-2x-7\right)\)

\(=-2\left(2x-5\right)\)

c: \(5\left(x+3y\right)-15x\left(x+3y\right)\)

\(=\left(x+3y\right)\left(-15x+5\right)\)

\(=-5\left(3x-1\right)\left(x+3y\right)\)

d: \(x\left(x+y\right)^2-y\left(x+y\right)^2+xy-x^2\)

\(=\left(x+y\right)^2\cdot\left(x-y\right)-x\left(x-y\right)\)

\(=\left(x-y\right)\left[\left(x+y\right)^2-x\right]\)

e: \(a^2-6a+9-b^2\)

\(=\left(a-3\right)^2-b^2\)

\(=\left(a-3-b\right)\left(a-3+b\right)\)

f: \(x^3-y^3-3x^2+3x-1\)

\(=\left(x^3-3x^2+3x-1\right)-y^3\)

\(=\left(x-1\right)^3-y^3\)

\(=\left(x-1-y\right)\left[\left(x-1\right)^2+y\left(x-1\right)+y^2\right]\)

26 tháng 11 2023

Đa thức này không phân tích được nha bạn

10 tháng 10 2017

Tuy mk không biết làm nhưng mình sẽ đánh dấu bài này mk không cần bạn k nhưng bạn k trong các câu khác nha.

Chưa có ai trả lời câu hỏi này, hãy gửi một câu trả lời để giúp Trang Nhung giải bài toán này.

30 tháng 12 2020

 bbgfhfygfdsdty64562gdfhgvfhgfhhhhh

\hvhhhggybhbghhguyg

10 tháng 4 2021

1.phân tích đa thức thành nhân tử

x3 - 5x2 + 8x - 4

= x3 - x2 - 4x2 + 4x + 4x - 4

= x2( x - 1 ) - 4x( x - 1 ) + 4( x - 1 )

= ( x - 1 )( x2 - 4x + 4 ) = ( x - 1 )( x - 2 )2

10 tháng 4 2021

2.Cho các số a,b,c thỏa mãn a+b+c=3/2. Tìm giá trị nhỏ nhất của biểu thức P= a2 + b2 + c2

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(P=a^2+b^2+c^2=\frac{a^2}{1}+\frac{b^2}{1}+\frac{c^2}{1}\ge\frac{\left(a+b+c\right)^2}{1+1+1}=\frac{\left(\frac{3}{2}\right)^2}{3}=\frac{3}{4}\)

Đẳng thức xảy ra <=> a=b=c1/2. Vậy MinP = 3/4 

21 tháng 10 2018

Bài 1 :

a) \(x^2-6x+2023\)

\(=x^2-2\cdot x\cdot3+3^2+2014\)

\(=\left(x-3\right)^2+2014\ge2014\forall x\)

Dấu "=' xảy ra \(\Leftrightarrow x-3=0\Leftrightarrow x=3\)

b) \(B=\left(3x+5\right)^2+\left(3x-5\right)^2-2\left(3x+5\right)\left(3x-5\right)\)

Dễ thấy đây là HĐT thứ 2

\(B=\left(3x-5-3x-5\right)^2\)

\(B=\left(-10\right)^2\)

\(B=100\)

=> tự kết luận

Bài 2 :

\(x^2+4x-45\)

\(=x^2+9x-5x-45\)

\(=x\left(x+9\right)-5\left(x+9\right)\)

\(=\left(x+9\right)\left(x-5\right)\)

21 tháng 10 2018

1a) A=x2 - 6x + 9 +2014

A= (x-3)2 + 2014

ta có: (x-3)2\(\ge\)0\(\forall x\)

\(\Rightarrow\left(x+3\right)^2+2014\ge2014\)

Dấu "=" xảy ra <=> (x+3)2 = 0

                        <=> x+3=0

                        <=> x = -3

Vậy Amin=2014 <=> x = -3

b) B= \(\left(3x+5\right)^2+\left(3x-5\right)^2-2\left(3x+5\right)\left(3x-5\right)\) 

\(\left(3x+5-3x+5\right)^2\)

= 5= 25

2)\(x^2+4x-45\)

\(x^2+9x-5x-45\)

=\(x\left(x+9\right)-5\left(x+9\right)\)

=\(\left(x-5\right)\left(x+9\right)\)

27 tháng 2 2021

cháu tôi học ghê thế :))

a) 3x3 - 7x2 + 17x - 5

= 3x3 - x2 - 6x2 + 2x + 15x - 5

= x2( 3x - 1 ) - 2x( 3x - 1 ) + 5( 3x - 1 )

= ( 3x - 1 )( x2 - 2x + 5 )

b) Đặt A = a2 + ab + b2 - 3a - 3b + 3

=> 4A = 4a2 + 4ab + 4b2 - 12a - 12b + 12

= ( 4a2 + 4ab + b2 - 12a - 6b + 9 ) + ( 3b2 - 6b + 3 )

= ( 2a + b - 3 )2 + 3( b - 1 )2 ≥ 0 ∀ a, b

hay 4A ≥ 0 => A ≥ 0

Dấu "=" xảy ra <=> a = b = 1

NM
27 tháng 2 2021

a.

\(3x^3-7x^2+17x-5=3x^3-x^2-6x^2+2x+15x-5\)

\(=\left(3x-1\right)\left[x^2-2x+5\right]\)

b.\(a^2+ab+b^2-3a-3b+3=\left(a-1\right)^2+\left(b-1\right)^2+\left(a-1\right)\left(b-1\right)\)

\(=\left[a-1+\frac{b-1}{2}\right]^2+\frac{3}{4}\left(b-1\right)^2\ge0\)

dấu bằng xảy ra khi \(a-1=b-1=0\Leftrightarrow a=b=1\)

6 tháng 6 2017

ko pt dc nhé bạn