\(\frac{10}{12}\)- \(\frac{1}{2}\)- \(\frac{1}{3}\)=
giải cả cách làm hộ mình nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{3}{4}+\frac{2}{3}-\frac{1}{6}\)
\(=\frac{3}{4}+\frac{2}{3}\)
\(=\frac{17}{12}\)
\(=\frac{17}{12}-\frac{1}{6}\)
\(=\frac{90}{72}\)
A=(1-1/1)+(1-1/4)+(1-1/9)+(1/16)+..........+(1-1/100)
=>1-99/100
Đặt N=\(\frac{1}{3}\)+\(\frac{1}{6}\)+\(\frac{1}{10}\)+......+\(\frac{2x}{x\left(x+1\right)}\)
N=\(\frac{2}{6}\)+\(\frac{2}{12}\)+\(\frac{2}{20}\)+.....+\(\frac{2x}{x\left(x+1\right)}\)
N=\(\frac{2}{2.3}\)+\(\frac{2}{3.4}\)+\(\frac{2}{4.5}\)+.....+\(\frac{2x}{x\left(x+1\right)}\)
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{11^2}>\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{11.12}\)
mà \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{11.12}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{11}-\frac{1}{12}\)
\(=\frac{1}{2}-\frac{1}{12}=\frac{5}{12}\)
=>\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{11^2}>\frac{5}{12}\)
=> x+2/10^10+x+2/11^11-x+2/12^12-x+2/13^13=0
=>(x+2).(1/10^10+1/11^11-1/12^12-1/13^13)=0
Mà 1/10^10>1/11^11>1/12^12>1/13^13
=>1/10^10+1/11^11-1/12^12-1/13^13 khác 0
=>x+2=0=>x=-2
Tick nhé
10/12-1/2-1/3
=10/12-6/12-4/12
=4/12-4/12
=0
10/12-1/2-1/3=1/3-1/3
=0