Cho ΔABC nhọn (AB<AC). Đường cao AD, BE, CF cắt nhau ở H.
a) Chứng mình AEHF nội tiếp.
b) Gọi O là trung điểm BC, tia CB và EF cắt nhau ở M. CMR: \(\widehat{\text{FAD}}\) = \(\widehat{\text{OFC}}\) và OC2=OD.OM
c) CMR: MH ⊥ AO.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔAFC vuông tại F và ΔAEB vuông tại E có
CF=BE
góc ACF=gócABE
=>ΔAFC=ΔAEB
=>AC=AB
Xét ΔCEB vuông tại E và ΔCDA vuông tại D có
EB=DA
góc C chung
=>ΔCEB=ΔCDA
=>CB=CA=AB
=>ΔABC đều
a) Xét tam giác AHE vuông tại H:
Ta có: AH2 = AE2 + EH2 (Định lý Pytago).
Thay số: AH2 = 162 + 122
<=> AH2 = 256 + 144 <=> AH2 = 400 <=> AH = 20 (cm)
Xét tam giác AHB vuông tại H, EH là đường cao:
Ta có: AE.EB = EH2 (Hệ thức lượng)
Thay số: 16.EB = 122
<=> 16.EB = 144
<=> EB = 9 (cm)
Xét tam giác AHE vuông tại E:
tan BAH = \(\dfrac{EH}{AE}\) (Tỉ số lượng giác)
Thay số: tan BAH = \(\dfrac{12}{16}=\dfrac{3}{4}\)
tan BAH = 36o 52'
a, Xét tam giác ABD và tam giác ACE
^A _ chung
^ADB = ^AEC = 900
Vậy tam giác ABD ~ tam giác ACE (g.g)
b, Xét tam giác CBD và tam giác CAK ta có
^C _ chung
^CDB = ^CKA = 900
Vậy tam giác CDB ~ tam giác CKA (g.g)
\(\dfrac{CD}{CK}=\dfrac{CB}{CA}\Rightarrow CD.CA=CB.CK\)
c, Xét tam giác KDC và tam giác ABC
^C _ chung
\(\dfrac{DC}{BC}=\dfrac{KC}{AC}\)( tỉ lệ thức tỉ số đồng dạng )
Vậy tam giác KDC ~ tam giác ABC (c.g.c)
a)Xét ΔABE và ΔACF ta có:
\(\widehat{A}\) \(chung\)
\(\widehat{AEB}=\widehat{AFC}=90^0\)
⇒ΔABE ∼ ΔACF(g.g)
a: Xét ΔABE vuông tại E và ΔACF vuông tại F có
góc A chung
=>ΔABE đồng dạng với ΔACF
b: Xét ΔHFB vuông tại F và ΔHEC vuông tại E có
góc FHB=góc EHC
=>ΔHFB đồng dạng với ΔHEC
=>HF/HE=HB/HC
=>HF*HC=HE*HB
a: Xét tứ giác AEHF có \(\widehat{AEH}+\widehat{AFH}=90^0+90^0=180^0\)
nên AEHF là tứ giác nội tiếp
b: Ta có; ΔFBC vuông tại F
mà FO là đường trung tuyến
nên OF=OC
=>ΔOFC cân tại O
=>\(\widehat{OFC}=\widehat{OCF}\)
mà \(\widehat{OCF}=\widehat{BAD}\left(=90^0-\widehat{ABC}\right)\)
nên \(\widehat{OFC}=\widehat{BAD}\)
c) Gọi J là trung điểm OH. Vẽ đường tròn đường kính OH. Khi đó vì \(\widehat{ODH}=90^o\) nên \(D\in\left(J\right)\). Vẽ đường tròn (BC)
Xét tam giác AEH và ADC, ta có: \(\widehat{AEH}=\widehat{ADC}=90^o\) và \(\widehat{HAC}\) chung \(\Rightarrow\Delta AEH\sim\Delta ADC\)
\(\Rightarrow\dfrac{AE}{AD}=\dfrac{AH}{AC}\)
\(\Rightarrow AE.AC=AD.AH\)
\(\Rightarrow P_{A/\left(O\right)}=P_{A/\left(J\right)}\)
\(\Rightarrow\) A nằm trên trục đẳng phương của (O) và (J).
Mặt khác, trong đường tròn (O), ta có: \(\widehat{FOE}=2\widehat{FCE}=\widehat{HCE}+\widehat{HBF}\) \(=\widehat{HDE}+\widehat{HDF}=\widehat{FDE}\) nên tứ FDOE nội tiếp.
\(\Rightarrow\widehat{FOD}=\widehat{FED}\)
Xét tam giác MDE và MFO, ta có:
\(\widehat{MED}=\widehat{MOF},\widehat{EMO}\) chung
\(\Rightarrow\Delta MDE\sim\Delta MFO\left(g.g\right)\)
\(\Rightarrow\dfrac{MD}{MF}=\dfrac{ME}{MO}\)
\(\Rightarrow MD.MO=MF.ME\)
\(\Rightarrow P_{M/\left(J\right)}=P_{M/\left(O\right)}\)
\(\Rightarrow\) M thuộc trục đẳng phương của (J) và (O)
Do đó AM là trục đẳng phương của (O) và (J) \(\Rightarrow AM\perp OJ\) hay \(AM\perp OH\)
Lại có \(AH\perp OM\) nên H là trực tâm tam giác AOM \(\Rightarrow MH\perp AO\) (đpcm)