K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác AEHF có \(\widehat{AEH}+\widehat{AFH}=90^0+90^0=180^0\)

nên AEHF là tứ giác nội tiếp

b: Ta có; ΔFBC vuông tại F

mà FO là đường trung tuyến

nên OF=OC

=>ΔOFC cân tại O

=>\(\widehat{OFC}=\widehat{OCF}\)

mà \(\widehat{OCF}=\widehat{BAD}\left(=90^0-\widehat{ABC}\right)\)

nên \(\widehat{OFC}=\widehat{BAD}\)

 

28 tháng 3

 

c) Gọi J là trung điểm OH. Vẽ đường tròn đường kính OH. Khi đó vì \(\widehat{ODH}=90^o\) nên \(D\in\left(J\right)\). Vẽ đường tròn (BC)

 Xét tam giác AEH và ADC, ta có: \(\widehat{AEH}=\widehat{ADC}=90^o\) và \(\widehat{HAC}\) chung \(\Rightarrow\Delta AEH\sim\Delta ADC\) 

\(\Rightarrow\dfrac{AE}{AD}=\dfrac{AH}{AC}\) 

\(\Rightarrow AE.AC=AD.AH\)

\(\Rightarrow P_{A/\left(O\right)}=P_{A/\left(J\right)}\)

\(\Rightarrow\) A nằm trên trục đẳng phương của (O) và (J).

Mặt khác, trong đường tròn (O), ta có: \(\widehat{FOE}=2\widehat{FCE}=\widehat{HCE}+\widehat{HBF}\) \(=\widehat{HDE}+\widehat{HDF}=\widehat{FDE}\) nên tứ FDOE nội tiếp.

 \(\Rightarrow\widehat{FOD}=\widehat{FED}\)

 Xét tam giác MDE và MFO, ta có:

 \(\widehat{MED}=\widehat{MOF},\widehat{EMO}\) chung 

 \(\Rightarrow\Delta MDE\sim\Delta MFO\left(g.g\right)\)

 \(\Rightarrow\dfrac{MD}{MF}=\dfrac{ME}{MO}\)

 \(\Rightarrow MD.MO=MF.ME\)

 \(\Rightarrow P_{M/\left(J\right)}=P_{M/\left(O\right)}\)

 \(\Rightarrow\) M thuộc trục đẳng phương của (J) và (O)

Do đó AM là trục đẳng phương của (O) và (J) \(\Rightarrow AM\perp OJ\) hay \(AM\perp OH\) 

 Lại có \(AH\perp OM\) nên H là trực tâm tam giác AOM \(\Rightarrow MH\perp AO\) (đpcm)

Xét ΔAFC vuông tại F và ΔAEB vuông tại E có

CF=BE

góc ACF=gócABE

=>ΔAFC=ΔAEB

=>AC=AB

Xét ΔCEB vuông tại E và ΔCDA vuông tại D có

EB=DA

góc C chung

=>ΔCEB=ΔCDA

=>CB=CA=AB

=>ΔABC đều

6 tháng 7 2021

a) Xét tam giác AHE vuông tại H: 

Ta có: AH2 = AE2 + EH2 (Định lý Pytago).

Thay số: AH2 = 162 + 122

<=> AH2 = 256 + 144  <=> AH2 = 400 <=> AH = 20 (cm)

Xét tam giác AHB vuông tại H, EH là đường cao:

Ta có: AE.EB = EH2 (Hệ thức lượng)

Thay số: 16.EB = 122 

<=> 16.EB = 144

<=> EB = 9 (cm)

Xét tam giác AHE vuông tại E:

tan BAH = \(\dfrac{EH}{AE}\) (Tỉ số lượng giác)

Thay số: tan BAH = \(\dfrac{12}{16}=\dfrac{3}{4}\)

tan BAH = 36o 52'

 

 

 
6 tháng 3 2022

a, Xét tam giác ABD và tam giác ACE 

^A _ chung 

^ADB = ^AEC = 900

Vậy tam giác ABD ~ tam giác ACE (g.g) 

b, Xét tam giác CBD và tam giác CAK ta có 

^C _ chung 

^CDB = ^CKA = 900

Vậy tam giác CDB ~ tam giác CKA (g.g) 

\(\dfrac{CD}{CK}=\dfrac{CB}{CA}\Rightarrow CD.CA=CB.CK\)

c, Xét tam giác KDC và tam giác ABC 

^C _ chung 

\(\dfrac{DC}{BC}=\dfrac{KC}{AC}\)( tỉ lệ thức tỉ số đồng dạng ) 

Vậy tam giác KDC ~ tam giác ABC (c.g.c) 

9 tháng 4 2023

a)Xét ΔABE và ΔACF ta có:

\(\widehat{A}\) \(chung\)

\(\widehat{AEB}=\widehat{AFC}=90^0\)

⇒ΔABE ∼ ΔACF(g.g)

 

a: Xét ΔABE vuông tại E và ΔACF vuông tại F có

góc A chung

=>ΔABE đồng dạng với ΔACF

b: Xét ΔHFB vuông tại F và ΔHEC vuông tại E có

góc FHB=góc EHC

=>ΔHFB đồng dạng với ΔHEC

=>HF/HE=HB/HC

=>HF*HC=HE*HB