K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2017

Hình như thừa số 2

Áp dụng BĐT AM-GM ta có:

\(VT=\left(a+b+c\right)\left(ab+bc+ca\right)\)

\(\ge3\sqrt[3]{abc}\cdot3\sqrt[3]{\left(abc\right)^2}=3\sqrt[3]{\left(abc\right)^3}=VP\)

Xảy ra khi \(a=b=c\)

28 tháng 10 2019

Bai này quen quen ! Mình còn ghi trong vở nè !

Chứng minh:

Áp dụng bất đẳng thức Schur ta có :

\(\left(a+b+c\right)^3+9abc\ge4\left(a+b+c\right)\left(ab+bc+ca\right)\)

\(\Leftrightarrow\left(a+b+c\right)^2+\frac{9abc}{a+b+c}\ge4\left(ab+bc+ac\right)\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)+\frac{9abc}{a+b+c}\ge4\left(ab+bc+ac\right)\)

\(\Leftrightarrow a^2+b^2+c^2+\frac{9abc}{a+b+c}\ge2\left(ab+bc+ac\right)\left(đpcm\right)\)

8 tháng 9 2019

Biến đổi :

\(VT=\frac{a}{b^3+ab}+\frac{b}{c^3+bc}+\frac{c}{a^3+ca}=\frac{a}{b\left(a+b^2\right)}+\frac{b}{c\left(b+c^2\right)}+\frac{c}{a\left(c+a^2\right)}\)

\(=\frac{1}{b}\cdot\frac{a}{a+b^2}+\frac{1}{c}\cdot\frac{b}{b+c^2}+\frac{1}{a}\cdot\frac{1}{c+a^2}\)

\(=\frac{1}{b}\cdot\left(1-\frac{b^2}{a+b^2}\right)+\frac{1}{c}\cdot\left(1-\frac{c^2}{b+c^2}\right)+\frac{1}{a}\cdot\left(1-\frac{a^2}{c+a^2}\right)\)

Áp dụng BĐT Cô-si :

\(VT\ge\frac{1}{b}\cdot\left(1-\frac{b^2}{2b\sqrt{a}}\right)+\frac{1}{c}\cdot\left(1-\frac{c^2}{2c\sqrt{b}}\right)+\frac{1}{a}\cdot\left(1-\frac{a^2}{2a\sqrt{c}}\right)\)

\(=\frac{1}{b}-\frac{1}{2\sqrt{a}}+\frac{1}{c}-\frac{1}{2\sqrt{b}}+\frac{1}{a}-\frac{1}{2\sqrt{c}}\)

\(=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-\frac{1}{2}\cdot\left(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\right)\)

Áp dụng BĐT quen thuộc : \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\) và BĐT Cô-si ta có:

\(VT\ge\frac{9}{a+b+c}-\frac{1}{2}\cdot\left(\frac{\frac{1}{a}+1}{2}+\frac{\frac{1}{b}+1}{2}+\frac{\frac{1}{c}+1}{2}\right)\)

\(=\frac{9}{3}-\frac{1}{2}\cdot\left(\frac{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+3}{2}\right)\ge3-\frac{1}{2}\cdot\left(\frac{\frac{9}{a+b+c}+3}{2}\right)\)

\(=3-\frac{1}{2}\cdot\left(\frac{\frac{9}{3}+3}{2}\right)=\frac{3}{2}\)

Ta có đpcm.

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)

AH
Akai Haruma
Giáo viên
26 tháng 12 2018

Lời giải:
\(a+b+c+\frac{9abc}{ab+bc+ac}\geq 4\left(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\right)\)

\(\Leftrightarrow (a+b+c)(ab+bc+ac)+9abc\geq 4(ab+bc+ac)\left(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\right)\)

\(\Leftrightarrow (a+b+c)(ab+bc+ac)+9abc\geq \frac{4a^2b^2}{a+b}+4abc+\frac{4b^2c^2}{b+c}+4abc+\frac{4a^2c^2}{a+c}+4abc\)

\(\Leftrightarrow ab(a+b)+bc(b+c)+ca(c+a)\geq \frac{4a^2b^2}{a+b}+\frac{4b^2c^2}{b+c}+\frac{4a^2c^2}{a+c}(*)\)

Áp dụng BĐT AM-GM:

\(4ab\leq (a+b)^2\Rightarrow \frac{4a^2b^2}{a+b}\leq \frac{ab(a+b)^2}{a+b}=ab(a+b)\)

TT: \(\frac{4b^2c^2}{b+c}\leq bc(b+c); \frac{4c^2a^2}{c+a}\leq ac(a+c)\)

Cộng các BĐT trên ta thu được BĐT $(*)$. Tức là $(*)$ luôn đúng, kéo theo BĐT ban đầu luôn đúng

Ta có đpcm.

Dấu "=" xảy ra khi $a=b=c$