K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 5 2019

a/ Biến đổi tương đương:

\(\Leftrightarrow a^2c+ab^2+bc^2\ge b^2c+ac^2+a^2b\)

\(\Leftrightarrow a^2c-a^2b+ab^2-ac^2+bc^2-b^2c\ge0\)

\(\Leftrightarrow a^2\left(c-b\right)-\left(ab+ac\right)\left(c-b\right)+bc\left(c-b\right)\ge0\)

\(\Leftrightarrow\left(c-b\right)\left(a^2+bc-ab-ac\right)\ge0\)

\(\Leftrightarrow\left(c-b\right)\left(a\left(a-b\right)-c\left(a-b\right)\right)\ge0\)

\(\Leftrightarrow\left(c-b\right)\left(a-c\right)\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(c-b\right)\left(c-a\right)\left(b-a\right)\ge0\) luôn đúng do \(a\le b\le c\)

Vậy BĐT ban đầu đúng

Câu 2: Đề sai, cho \(a=b=c=1\Rightarrow3\ge6\) (sai)

Đề đúng phải là \(\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

\(VT=\frac{a^2}{abc}+\frac{b^2}{abc}+\frac{c^2}{abc}=\frac{a^2+b^2+c^2}{abc}\ge\frac{ab+ac+bc}{abc}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

Câu 3: Không phải với mọi x; y với mọi \(x;y\) dương

Biến đổi tương đương do mẫu số vế phải dương nên ta được quyền nhân chéo:

\(\Leftrightarrow3x^3\ge\left(2x-y\right)\left(x^2+xy+y^2\right)\)

\(\Leftrightarrow3x^3\ge2x^3+x^2y+xy^2-y^3\)

\(\Leftrightarrow x^3+y^3-x^2y-xy^2\ge0\)

\(\Leftrightarrow x^2\left(x-y\right)-y^2\left(x-y\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)\left(x^2-y^2\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\ge0\) (luôn đúng)

13 tháng 6 2018

Ta có: \(a^3+b^3+c^3\ge3abc\) ( BĐT Cauchy )

\(\Rightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge\dfrac{abc}{b}+\dfrac{abc}{c}+\dfrac{abc}{a}\)

Hay \(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge ac+ab+bc\left(đpcm\right)\)

13 tháng 6 2018

Áp dụng BĐT Cauchy cho các số dương , ta có :

\(\dfrac{a^3}{b}+ab\)\(2\sqrt{\dfrac{a^3}{b}.ab}=2\sqrt{a^4}=2a^2\left(1\right)\)

\(\dfrac{b^3}{c}+bc\)\(2\sqrt{\dfrac{b^3}{c}.bc}=2\sqrt{b^4}=2b^2\left(2\right)\)

\(\dfrac{c^3}{a}+ac\)\(2\sqrt{\dfrac{c^3}{a}.ac}=2\sqrt{c^4}=2c^2\left(3\right)\)

Cộng từng vế của ( 1 ; 2 ; 3) , ta có :

\(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}+ab+bc+ac\)\(2\left(a^2+b^2+c^2\right)\) ( * )

Áp dụng BĐT Cauchy cho các số dương , ta có :

\(a^2+b^2\)\(2ab\left(4\right)\)

\(b^2+c^2\)\(2bc\left(5\right)\)

\(c^2+a^2\)\(2ac\left(6\right)\)

Cộng từng vế của ( 4 ; 5 ; 6) , ta có :

\(2\left(a^2+b^2+c^2\right)\)\(2\left(ab+bc+ac\right)\) ( ** )

Từ ( * ; ** ) , ta có :

\(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}+ab+bc+ac\)\(2\left(ab+bc+ac\right)\)

\(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\)\(ab+bc+ac\)

16 tháng 2 2019

1, Áp dụng bất đẳng thức Cô-si cho 2 số dương ta được

\(\frac{bc}{a}+\frac{ab}{c}\ge2\sqrt{\frac{bc}{a}.\frac{ab}{c}}=2b\)

\(\frac{ac}{b}+\frac{ab}{c}\ge2\sqrt{\frac{ac}{b}.\frac{ab}{c}}=2a\)

\(\frac{ac}{b}+\frac{bc}{a}\ge2\sqrt{\frac{ac}{b}.\frac{bc}{a}}=2c\)
Cộng từng vế vào ta được 

\(2\left(\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}\right)\ge2\left(a+b+c\right)\)

\(\Leftrightarrow\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}\ge a+b+c\)
Dấu "=" khi a = b = c

16 tháng 2 2019

2,Vì a,b,c là 3 cạnh của tam giác nên a,b,c > 0 

Ta có các bđt quen thuộc sau : \(\frac{m}{n}>\frac{m}{m+n}\)và \(\frac{m}{n}< \frac{m+m}{m+n}\)

\(\Rightarrow\frac{m}{m+n}< \frac{m}{n}< \frac{m+m}{m+n}\). Áp dụng bđt này ta được 

\(\frac{a}{a+b+c}< \frac{a}{b+c}< \frac{a+a}{a+b+c}\)

\(\frac{b}{a+b+c}< \frac{b}{a+b+c}< \frac{b+b}{a+b+c}\)

\(\frac{c}{a+b+c}< \frac{c}{a+b}< \frac{c+c}{a+b+c}\)

Cộng 3 bđt trên lại ta được đpcm

11 tháng 10 2017

 a+b+c+d=0 
=>a+b=-(c+d) 
=> (a+b)^3=-(c+d)^3 
=> a^3+b^3+3ab(a+b)=-c^3-d^3-3cd(c+d) 
=> a^3+b^3+c^3+d^3=-3ab(a+b)-3cd(c+d) 
=> a^3+b^3+c^3+d^3=3ab(c+d)-3cd(c+d) ( vi a+b = - (c+d)) 
==> a^3 +b^^3+c^3+d^3==3(c+d)(ab-cd) (dpcm)

14 tháng 10 2017

Cho mk nói bạn Alan Walker chỉ là hs lớp 6 sao tài vậy

Nếu bạn ko biết làm thì thôi

Làm nhục anh em bạn ạ

14 tháng 1 2019

Áp dụng bất đẳng thức Cô-si:

\(VT\ge3\sqrt[3]{\left(abc\right)^2}\cdot3\sqrt[3]{abc}=9\sqrt[3]{\left(abc\right)^3}=9\)

Dấu "=" khi a = b = c

15 tháng 1 2019

nhầm bước = 9abc nhé