Cho tứ giác ABCD có ^B+^D=180, AC là tia phân giác của ^A .Chứng minh rằng CB = CD.
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
Trên cạnh AD lấy điểm E sao cho AE = AB
Xét t/g ABC và t/g AEC có :
\(AB=AE\)
\(\widehat{BAC}=\widehat{EAC}\)( Vì AC là tia phân giác của góc BAD )
\(AC\) cạnh chung
\(\Rightarrow\)t/g ABC t/g AEC ( c-g-c )
\(\Rightarrow\)\(BC=CE\)và \(\widehat{ABC}=\widehat{AEC}\)
Tứ giác ABCD có : \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360độ\)
Mà \(\widehat{A}+\widehat{C}=180độ\)
\(\Rightarrow\widehat{B}+\widehat{D}=180độ\)
Từ \(\widehat{ABC};\widehat{AEC}\)\(và\)\(\widehat{DEC}+\widehat{AEC}=180độ\)
\(\Rightarrow\widehat{DEC}=\widehat{D}\)
\(Nên\)t/g CDE cân tại C \(\Rightarrow\)\(DC=CE\)
\(Từ\)\(BC=CE\)\(và\)\(DC=CE\)
\(\Rightarrow\)\(CB=CD\left(đpcm\right)\)