Chứng minh : n thuộc N có n2 chia hết cho 3 thì n chia hết cho 3
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
29 tháng 10 2023
a: \(\left(n+3\right)^2-n^2=\left(n+3+n\right)\left(n+3-n\right)\)
\(=3\left(2n+3\right)⋮3\)
b: Đặt A=\(\left(n-5\right)^2-n^2\)
\(A=\left(n-5\right)^2-n^2\)
\(=n^2-10n+25-n^2\)
\(=-10n+25=5\left(-2n+5\right)⋮5\)
\(A=\left(n-5\right)^2-n^2\)
\(=-10n+25\)
\(-10n⋮2;25⋮̸2\)
=>-10n+25 không chia hết cho 2
=>A không chia hết cho 2
KV
29 tháng 10 2023
(n + 3)² - n² = n² + 6n + 9 - n²
= 6n + 9
= 3(3n + 3) ⋮ 3
Vậy [(n + 3)² - n²] ⋮ 3 với mọi n ∈ ℕ
--------
(n - 5)² - n² = n² - 10n + 25 - n²
= -10n + 25
= -5(2n - 5) ⋮ 5
Do -10n ⋮ 2
25 không chia hết cho 2
⇒ -10n + 25 không chia hết cho 2
Vậy [(n - 5)² - n²] ⋮ 5 và không chia hết cho 2 với mọi n ∈ ℕ
5 tháng 9 2016
mk cung dang mac bai nay nen mong nhieu bn giup do chi nha !
Giả sử n không chia hết cho 3 thì \(\orbr{\begin{cases}n=3k+1\\n=3k+2\end{cases}}\)
TH1: \(n=3k+1\Rightarrow n^2=\left(3k+1\right)^2=9k^2+6k+1\text{⋮̸}3\) (Vô lý)
TH2: \(n=3k+2\Rightarrow n^2=\left(3k+2\right)^2=9k^2+12k+4\text{⋮̸}3\) (Vô lý)
Vậy để n2 chia hết cho 3 thì n phải chia hết cho 3.